論文の概要: War Elephants: Rethinking Combat AI and Human Oversight
- arxiv url: http://arxiv.org/abs/2404.19573v1
- Date: Tue, 30 Apr 2024 14:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:05:41.196478
- Title: War Elephants: Rethinking Combat AI and Human Oversight
- Title(参考訳): AIと人間の監視を再考する「戦争エレファント」
- Authors: Philip Feldman, Aaron Dant, Harry Dreany,
- Abstract要約: 我々は、専門家のためのAIの置換を超越して、補完的な人間と機械の能力が混ざり合ったアプローチに目を向ける。
補完の原則に基づくアプローチによって、致命的な自律システムを管理するためのフレキシブルでダイナミックなアプローチを提供します。
このアプローチにより、より倫理的になり、機械の速度で運用され、より幅広いダイナミックな戦場条件に対応することができる戦闘システムの開発が可能になる。
- 参考スコア(独自算出の注目度): 0.5898893619901381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the changes that pervasive AI is having on the nature of combat. We look beyond the substitution of AI for experts to an approach where complementary human and machine abilities are blended. Using historical and modern examples, we show how autonomous weapons systems can be effectively managed by teams of human "AI Operators" combined with AI/ML "Proxy Operators." By basing our approach on the principles of complementation, we provide for a flexible and dynamic approach to managing lethal autonomous systems. We conclude by presenting a path to achieving an integrated vision of machine-speed combat where the battlefield AI is operated by AI Operators that watch for patterns of behavior within battlefield to assess the performance of lethal autonomous systems. This approach enables the development of combat systems that are likely to be more ethical, operate at machine speed, and are capable of responding to a broader range of dynamic battlefield conditions than any purely autonomous AI system could support.
- Abstract(参考訳): 本稿では,AIの普及が戦闘の性質に与える影響について考察する。
我々は、専門家のためのAIの置換を超越して、補完的な人間と機械の能力が混ざり合ったアプローチに目を向ける。
歴史的および近代的な例を用いて、AI/ML "Proxy Operators"と組み合わせて、人間の"AI Operators"のチームが自律兵器システムを効果的に管理する方法を示す。
補完の原則にアプローチを基づけることで、致命的な自律システムを管理するためのフレキシブルでダイナミックなアプローチを提供します。
我々は、戦場AIが戦場内の行動パターンを監視して致命的な自律システムの性能を評価する、機械学習戦闘の総合的なビジョンを達成するための道を示す。
このアプローチにより、より倫理的になり、機械速度で運用され、純粋に自律的なAIシステムがサポートできるものよりも幅広いダイナミックな戦場条件に対応することができる戦闘システムの開発が可能になる。
関連論文リスト
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - A Technological Perspective on Misuse of Available AI [41.94295877935867]
民間人工知能(AI)の悪意ある誤用は、国家や国際レベルでのセキュリティに深刻な脅威をもたらす可能性がある。
既存のオープンなAI技術が、いかに誤用されているかを示します。
我々は、政治的、デジタル的、物理的セキュリティを脅かす、潜在的に誤用されたAIの典型的なユースケースを3つ開発する。
論文 参考訳(メタデータ) (2024-03-22T16:30:58Z) - Killer Apps: Low-Speed, Large-Scale AI Weapons [2.2899177316144943]
人工知能(AI)と機械学習(ML)の進歩は、戦争と安全保障における新たな課題と機会を提示する。
本稿では,AI兵器の概念,その展開,検出,潜在的な対策について検討する。
論文 参考訳(メタデータ) (2024-01-14T12:09:40Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
海上自律システムのAIセキュリティを評価するための,最初のレッドチームフレームワークを提案する。
このフレームワークはマルチパートのチェックリストであり、異なるシステムや要件に合わせて調整できる。
私たちはこのフレームワークが、現実の海上自律システムAI内の多数の脆弱性を明らかにするために、レッドチームにとって非常に効果的であることを実証しています。
論文 参考訳(メタデータ) (2023-12-08T14:59:07Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。