論文の概要: Actionable AI: Enabling Non Experts to Understand and Configure AI Systems
- arxiv url: http://arxiv.org/abs/2503.06803v1
- Date: Sun, 09 Mar 2025 23:09:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:28.828861
- Title: Actionable AI: Enabling Non Experts to Understand and Configure AI Systems
- Title(参考訳): Actionable AI - 非専門家にAIシステムの理解と構成を促す
- Authors: Cécile Boulard, Sruthi Viswanathan, Wanda Fey, Thierry Jacquin,
- Abstract要約: Actionable AIでは、非専門家がブラックボックスエージェントを設定することができる。
不確実な条件下では、非専門家は高いレベルの性能を達成する。
我々は、AIベースのエージェントへのアクセスをオープンにする手段として、Actionable AIを提案する。
- 参考スコア(独自算出の注目度): 5.534140394498714
- License:
- Abstract: Interaction between humans and AI systems raises the question of how people understand AI systems. This has been addressed with explainable AI, the interpretability arising from users' domain expertise, or collaborating with AI in a stable environment. In the absence of these elements, we discuss designing Actionable AI, which allows non-experts to configure black-box agents. In this paper, we experiment with an AI-powered cartpole game and observe 22 pairs of participants to configure it via direct manipulation. Our findings suggest that, in uncertain conditions, non-experts were able to achieve good levels of performance. By influencing the behaviour of the agent, they exhibited an operational understanding of it, which proved sufficient to reach their goals. Based on this, we derive implications for designing Actionable AI systems. In conclusion, we propose Actionable AI as a way to open access to AI-based agents, giving end users the agency to influence such agents towards their own goals.
- Abstract(参考訳): 人間とAIシステムの相互作用は、人々がAIシステムをどのように理解するかという疑問を提起する。
これは、説明可能なAI、ユーザのドメイン専門知識から生じる解釈可能性、あるいは安定した環境でAIとコラボレーションすることで解決されている。
これらの要素が存在しない状態では、非専門家がブラックボックスエージェントを設定することができるActionable AIの設計について議論する。
本稿では,AIを利用したカートポールゲームを用いて22組の参加者を観察し,直接操作により構成する。
その結果,不確実な条件下では,非専門家が高い性能を達成できたことが示唆された。
エージェントの行動に影響を与えることで、彼らはその目的を達成するのに十分な、運用上の理解を示した。
これに基づいて、Actionable AIシステムを設計するための意味を導出する。
結論として、AIベースのエージェントへのアクセスをオープンにする手段として、Actionable AIを提案する。
関連論文リスト
- How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
我々は、プレッシャーと説明可能なAI(XAI)技術がAIアドバイステイク行動とどのように相互作用するかを示す。
我々の結果は、圧力とXAIの異なる組み合わせで複雑な相互作用効果を示し、AIアドバイスの行動を改善するか、悪化させるかのどちらかを示す。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Explaining Explaining [0.882727051273924]
高度なAIシステムに自信を持つ人々にとって、説明は鍵となる。
マシンラーニングベースのシステムは、通常はブラックボックスであるため、説明できない。
認知エージェント開発におけるハイブリッドアプローチについて述べる。
論文 参考訳(メタデータ) (2024-09-26T16:55:44Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
ブラックボックスAIシステムは、誤った判断を下すと、責任と説明責任の問題を引き起こす可能性がある。
説明可能なAI(XAI)は、開発者とエンドユーザの間の知識ギャップを埋めようとしている。
論文 参考訳(メタデータ) (2023-01-13T01:08:49Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Structured access to AI capabilities: an emerging paradigm for safe AI
deployment [0.0]
AIシステムをオープンに普及させる代わりに、開発者はAIシステムとの制御された腕の長さのインタラクションを促進する。
Aimは、危険なAI能力が広くアクセスされることを防ぐと同時に、安全に使用できるAI機能へのアクセスを保護することを目的としている。
論文 参考訳(メタデータ) (2022-01-13T19:30:16Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。