論文の概要: Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques
- arxiv url: http://arxiv.org/abs/2405.00142v1
- Date: Tue, 30 Apr 2024 18:39:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:26:02.442599
- Title: Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques
- Title(参考訳): 機械学習と3次元ニューロイメージングによる聴覚障害の予測:次元減少と回帰手法の比較分析
- Authors: Trinath Sai Subhash Reddy Pittala, Uma Maheswara R Meleti, Manasa Thatipamula,
- Abstract要約: 我々は,脳の灰白質3次元画像における難聴閾値を予測するための機械学習アプローチについて検討した。
第1フェーズでは,3次元CNNモデルを用いて,遅延空間への高次元入力を低減した。
第2フェーズでは、このモデルを使用して、リッチな機能への入力を削減した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this project, we have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images. We have solved the problem statement in two phases. In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space and decode it into an original image to represent the input in rich feature space. In the second phase, we utilized this model to reduce input into rich features and used these features to train standard machine learning models for predicting hearing thresholds. We have experimented with autoencoders and variational autoencoders in the first phase for dimensionality reduction and explored random forest, XGBoost and multi-layer perceptron for regressing the thresholds. We split the given data set into training and testing sets and achieved an 8.80 range and 22.57 range for PT500 and PT4000 on the test set, respectively. We got the lowest RMSE using multi-layer perceptron among the other models. Our approach leverages the unique capabilities of VAEs to capture complex, non-linear relationships within high-dimensional neuroimaging data. We rigorously evaluated the models using various metrics, focusing on the root mean squared error (RMSE). The results highlight the efficacy of the multi-layer neural network model, which outperformed other techniques in terms of accuracy. This project advances the application of data mining in medical diagnostics and enhances our understanding of age-related hearing loss through innovative machine-learning frameworks.
- Abstract(参考訳): 本稿では,脳の灰白質3次元画像における難聴閾値を予測するための機械学習手法について検討した。
我々はその問題を2段階に分けて解決した。
第1フェーズでは、3次元CNNモデルを用いて、遅延空間への高次元入力を減らし、リッチな特徴空間における入力を表現するために元の画像に復号する。
第2フェーズでは、このモデルをリッチな特徴への入力を減らすために使用し、これらの特徴を使用して、聴覚閾値を予測するための標準的な機械学習モデルを訓練した。
我々は、次元減少のための第1フェーズにおけるオートエンコーダと変分オートエンコーダの実験を行い、しきい値の回帰のためのランダムフォレスト、XGBoostおよび多層パーセプトロンを探索した。
与えられたデータセットをトレーニングセットとテストセットに分割し、テストセットでそれぞれPT500とPT4000に対して8.80の範囲と22.57の範囲を達成しました。
他のモデルの中でも最も低いRMSEを多層パーセプトロンで取得した。
我々のアプローチは、高次元のニューロイメージングデータ内の複雑な非線形関係を捉えるために、VAEのユニークな能力を活用している。
我々は、ルート平均二乗誤差(RMSE)に着目し、様々な指標を用いてモデルを厳格に評価した。
その結果,多層ニューラルネットワークモデルの有効性が強調され,精度の点で他の手法よりも優れていた。
本研究は,医療診断におけるデータマイニングの活用を推進し,革新的な機械学習フレームワークによる年齢関連難聴の理解を深めるものである。
関連論文リスト
- Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
論文 参考訳(メタデータ) (2024-06-20T11:26:32Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis [3.208731414009847]
トランスファーラーニングは、特定のタスクに適応するために、大規模なデータコーパスでディープラーニングモデルを事前訓練することを含む。
視覚変換器 (ViTs) と畳み込みニューラルネットワーク (CNNs) のベンチマークを行った。
得られた事前訓練されたモデルは、ターゲットタスクのトレーニングデータが制限されている場合でも、さまざまな下流タスクに適応することができる。
論文 参考訳(メタデータ) (2023-09-09T00:33:23Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
脳の磁気共鳴イメージング(MRI)データに基づく年齢予測は、脳疾患や老化の進行を定量化するバイオマーカーである。
現在のアプローチでは、voxelを標準化された脳アトラスに登録するなど、複数の前処理ステップでデータを準備する。
ここでは、ResNetアーキテクチャに基づく3D Convolutional Neural Network(CNN)について、未登録のT1重み付きMRIデータに基づいてトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T09:48:34Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
入力RGB画像から3次元のポーズと形状を復元するディープニューラルネットワーク手法を提案する。
我々は最近導入された表現力のあるボディ統計モデルGHUMに頼っている。
我々の方法論の中心は、HUmanNeural Descent (HUND)と呼ばれるアプローチの学習と最適化である。
論文 参考訳(メタデータ) (2020-08-16T13:38:41Z) - Deep Medical Image Analysis with Representation Learning and
Neuromorphic Computing [1.43494686131174]
回転やアフィン変換に頑健な表現を明示的に学習するカプセルネットワークを提案する。
第2に、最新のドメイン適応技術を活用して、新しい最先端の精度を実現する。
第3に、Intel Loihiニューロモルフィックチップでトレーニングされたスパイクニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-11T20:56:37Z) - Attention-Guided Version of 2D UNet for Automatic Brain Tumor
Segmentation [2.371982686172067]
グリオーマは脳腫瘍の中でも最も一般的で攻撃的であり、高い成績で寿命が短くなる。
深層畳み込みニューラルネットワーク(DCNN)は脳腫瘍のセグメンテーションにおいて顕著な性能を発揮している。
しかし, グリオーマの強度や外観に変化があるため, この課題は依然として困難である。
論文 参考訳(メタデータ) (2020-04-04T20:09:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。