論文の概要: Social Life Simulation for Non-Cognitive Skills Learning
- arxiv url: http://arxiv.org/abs/2405.00273v1
- Date: Wed, 1 May 2024 01:45:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:47:02.547150
- Title: Social Life Simulation for Non-Cognitive Skills Learning
- Title(参考訳): 非認知的スキル学習のための社会生活シミュレーション
- Authors: Zihan Yan, Yaohong Xiang, Yun Huang,
- Abstract要約: 大型言語モデル(LLM)によって実現された対話型プラットフォームであるSimuLife++を紹介する。
このシステムでは、ユーザーは主人公として行動し、1つまたは複数のAIベースのキャラクターをさまざまな社会的シナリオで作り出すことができる。
その結果,サゲ剤の添加は物語の浸漬を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 7.730401608473805
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Non-cognitive skills are crucial for personal and social life well-being, and such skill development can be supported by narrative-based (e.g., storytelling) technologies. While generative AI enables interactive and role-playing storytelling, little is known about how users engage with and perceive the use of AI in social life simulation for non-cognitive skills learning. To this end, we introduced SimuLife++, an interactive platform enabled by a large language model (LLM). The system allows users to act as protagonists, creating stories with one or multiple AI-based characters in diverse social scenarios. In particular, we expanded the Human-AI interaction to a Human-AI-AI collaboration by including a sage agent, who acts as a bystander to provide users with more insightful perspectives on their choices and conversations. Through a within-subject user study, we found that the inclusion of the sage agent significantly enhanced narrative immersion, according to the narrative transportation scale, leading to more messages, particularly in group chats. Participants' interactions with the sage agent were also associated with significantly higher scores in their perceived motivation, self-perceptions, and resilience and coping, indicating positive impacts on non-cognitive skills reflection. Participants' interview results further explained the sage agent's aid in decision-making, solving ethical dilemmas, and problem-solving; on the other hand, they suggested improvements in user control and balanced responses from multiple characters. We provide design implications on the application of generative AI in narrative solutions for non-cognitive skill development in broader social contexts.
- Abstract(参考訳): 非認知的スキルは、個人的および社会的生活の幸福のために不可欠であり、そのようなスキル開発は物語に基づく技術(例えば、ストーリーテリング)によって支えられる。
生成型AIはインタラクティブでロールプレイングなストーリーテリングを可能にするが、非認知的スキル学習のための社会生活シミュレーションにおいてAIをどのように利用しているかは、ほとんど分かっていない。
そこで我々は,大規模言語モデル(LLM)によって実現された対話型プラットフォームであるSimuLife++を紹介した。
このシステムでは、ユーザーは主人公として行動し、1つまたは複数のAIベースのキャラクターをさまざまな社会的シナリオで作り出すことができる。
特に,人間とAIのインタラクションを人間-AI-AIのコラボレーションに拡張した。
本研究により,サゲエージェントの内包は物語伝達の規模に応じて物語の没入を著しく向上させ,特にグループチャットにおけるメッセージの増加につながった。
参加者とセージエージェントとの相互作用は、動機づけ、自己知覚、レジリエンスと対処において有意に高いスコアに関連付けられ、非認知的スキルの反映に肯定的な影響が示唆された。
参加者の面接結果は, 意思決定, 倫理的ジレンマの解決, 問題解決におけるサージエージェントの助力についてさらに説明し, また, ユーザコントロールの改善, 複数文字からのバランスの取れた応答についても示唆した。
我々は、より広い社会的文脈における非認知的スキル開発のための物語解法における生成的AIの適用に関する設計上の意味を提供する。
関連論文リスト
- Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
本研究では,仮想AIデジタルアシスタント(AIDA)の設計に関する10人のオンライン・遠隔学習学生の認識について検討した。
参加者全員が、リアルタイムのアシストとクエリの解決、学術的なタスクのサポート、パーソナライゼーションとアクセシビリティのサポート、そして感情的および社会的サポートにAIツールを使用することのメリットを研究し、報告しながら、そのようなAIツールの有用性について同意した。
学生の懸念は、AIDA、データプライバシとデータ利用、運用上の課題、学術的完全性と誤用、教育の将来に関する倫理的・社会的意味に関するものである。
論文 参考訳(メタデータ) (2024-02-16T08:10:41Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Affective Conversational Agents: Understanding Expectations and Personal
Influences [17.059654991560105]
様々なアプリケーションにおける情緒的スキルに対する期待と嗜好を理解するため,745人の回答者を対象に調査を行った。
以上の結果から,人間のインタラクション,情緒的サポート,創造的タスクを含むシナリオの選好が示唆された。
全体として、AIエージェントの望ましい感情的スキルは、アプリケーションのコンテキストと性質に大きく依存する。
論文 参考訳(メタデータ) (2023-10-19T04:33:18Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Vygotskian Autotelic Artificial Intelligence: Language and Culture
Internalization for Human-Like AI [16.487953861478054]
本稿では,人工寿命スキル発見の探求において,新たなAIパラダイムを提案する。
我々は特に言語に焦点をあて、その構造と内容が人工エージェントにおける新しい認知機能の発展にどう役立つかに注目した。
言語と体格の相互作用から生まれる新しい人工認知機能の例を明らかにすることで、アプローチを正当化する。
論文 参考訳(メタデータ) (2022-06-02T16:35:41Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - A Proposal for Intelligent Agents with Episodic Memory [0.9236074230806579]
エージェントはエピソード記憶の恩恵を受けるだろうと我々は主張する。
このメモリはエージェントの経験をエージェントが経験を信頼できるようにエンコードする。
本稿では,ANNと標準計算機科学技術を組み合わせて,エピソード記憶の記憶と検索を支援するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-05-07T00:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。