QUACK: Quantum Aligned Centroid Kernel
- URL: http://arxiv.org/abs/2405.00304v2
- Date: Wed, 24 Jul 2024 15:01:45 GMT
- Title: QUACK: Quantum Aligned Centroid Kernel
- Authors: Kilian Tscharke, Sebastian Issel, Pascal Debus,
- Abstract summary: We introduce QUACK, a quantum kernel algorithm whose time complexity scales linear with the number of samples during training.
Our algorithm is able to handle high-dimensional datasets such as MNIST with 784 features without any dimensionality reduction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing (QC) seems to show potential for application in machine learning (ML). In particular quantum kernel methods (QKM) exhibit promising properties for use in supervised ML tasks. However, a major disadvantage of kernel methods is their unfavorable quadratic scaling with the number of training samples. Together with the limits imposed by currently available quantum hardware (NISQ devices) with their low qubit coherence times, small number of qubits, and high error rates, the use of QC in ML at an industrially relevant scale is currently impossible. As a small step in improving the potential applications of QKMs, we introduce QUACK, a quantum kernel algorithm whose time complexity scales linear with the number of samples during training, and independent of the number of training samples in the inference stage. In the training process, only the kernel entries for the samples and the centers of the classes are calculated, i.e. the maximum shape of the kernel for n samples and c classes is (n, c). During training, the parameters of the quantum kernel and the positions of the centroids are optimized iteratively. In the inference stage, for every new sample the circuit is only evaluated for every centroid, i.e. c times. We show that the QUACK algorithm nevertheless provides satisfactory results and can perform at a similar level as classical kernel methods with quadratic scaling during training. In addition, our (simulated) algorithm is able to handle high-dimensional datasets such as MNIST with 784 features without any dimensionality reduction.
Related papers
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Learning out-of-time-ordered correlators with classical kernel methods [3.6538093004443155]
We investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs.
We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm.
We train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination.
arXiv Detail & Related papers (2024-09-03T04:20:24Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - Exponential concentration in quantum kernel methods [0.0]
We study the performance of quantum kernel models from the perspective of resources needed to accurately estimate kernel values.
We identify four sources that can lead to concentration including: expressivity of data embedding, global measurements, entanglement and noise.
arXiv Detail & Related papers (2022-08-23T16:06:10Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Quantum Semi-Supervised Kernel Learning [4.726777092009554]
We present a quantum machine learning algorithm for training Semi-Supervised Kernel Support Vector Machines.
We show that it maintains the same speedup as the fully-supervised Quantum LS-SVM.
arXiv Detail & Related papers (2022-04-22T13:39:55Z) - Kernel Matrix Completion for Offline Quantum-Enhanced Machine Learning [0.09786690381850353]
We show quantum kernel matrices can be extended to incorporate new data using a classical (chordal-graph-based) matrix completion algorithm.
The minimal sample complexity needed for perfect completion is dependent on matrix rank.
On a real-world, industrially-relevant data set, the completion error behaves gracefully even when the minimal sample complexity is not reached.
arXiv Detail & Related papers (2021-12-15T19:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.