Learning out-of-time-ordered correlators with classical kernel methods
- URL: http://arxiv.org/abs/2409.01592v1
- Date: Tue, 3 Sep 2024 04:20:24 GMT
- Title: Learning out-of-time-ordered correlators with classical kernel methods
- Authors: John Tanner, Jason Pye, Jingbo Wang,
- Abstract summary: We investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs.
We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm.
We train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination.
- Score: 3.6538093004443155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is often impractical. This is due to the need to simulate the dynamics of quantum many-body systems, which entails exponentially-scaling computational costs with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will generally require a fault-tolerant QC, which is currently beyond technological capabilities. Therefore, alternative approaches are needed for computing OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm that utilises matrix product operators to simulate quantum many-body systems, with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination ($R^2$) on the testing sets, typically between 0.9 and 0.99, and almost always exceeding 0.8. This demonstrates that classical kernels supplied with a moderate amount of training data can be used to closely and efficiently approximate OTOCs and related quantities for a diverse range of quantum many-body systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - Benchmarking of quantum fidelity kernels for Gaussian process regression [1.7287035469433212]
Quantum computing algorithms have been shown to produce performant quantum kernels for machine-learning classification problems.
We show that quantum kernels can achieve the same, though not better, expressivity as classical kernels for regression problems.
arXiv Detail & Related papers (2024-07-22T18:19:48Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
arXiv Detail & Related papers (2024-05-02T23:45:29Z) - Towards Efficient Quantum Anomaly Detection: One-Class SVMs using
Variable Subsampling and Randomized Measurements [4.180897432770239]
Quantum computing allows significant advancements in kernel calculation and model precision.
We present two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method.
Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively.
Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel.
arXiv Detail & Related papers (2023-12-14T17:42:18Z) - Quantum-Classical Multiple Kernel Learning [0.0]
Kernel methods in machine learning is one area where such improvements could be realized in the future.
Small and noisy quantum computers can evaluate classically-parametric quantum kernels that capture unique notions of similarity in data.
We consider pairwise combinations of classical, quantum-quantum, quantum-classical and QC kernels in the context of multiple kernel (MKL)
We show this approach to be effective for enhancing various metrics performance in an MKL setting.
arXiv Detail & Related papers (2023-05-28T12:29:04Z) - Parallel hybrid quantum-classical machine learning for kernelized
time-series classification [0.0]
We tackle with hybrid quantum-classical machine, deducing temporal temporal between pairwise instances using a time-series Hamiltonian (TSHK) algorithm.
Because we treat the kernel weighting step as a differentiable differentiable kernel function, our method can be regarded as an end learnable hybrid quantum-series techniques.
arXiv Detail & Related papers (2023-05-10T04:01:15Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.