Learning out-of-time-ordered correlators with classical kernel methods
- URL: http://arxiv.org/abs/2409.01592v1
- Date: Tue, 3 Sep 2024 04:20:24 GMT
- Title: Learning out-of-time-ordered correlators with classical kernel methods
- Authors: John Tanner, Jason Pye, Jingbo Wang,
- Abstract summary: We investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs.
We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm.
We train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination.
- Score: 3.6538093004443155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is often impractical. This is due to the need to simulate the dynamics of quantum many-body systems, which entails exponentially-scaling computational costs with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will generally require a fault-tolerant QC, which is currently beyond technological capabilities. Therefore, alternative approaches are needed for computing OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm that utilises matrix product operators to simulate quantum many-body systems, with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination ($R^2$) on the testing sets, typically between 0.9 and 0.99, and almost always exceeding 0.8. This demonstrates that classical kernels supplied with a moderate amount of training data can be used to closely and efficiently approximate OTOCs and related quantities for a diverse range of quantum many-body systems.
Related papers
- On the similarity of bandwidth-tuned quantum kernels and classical kernels [0.0]
Quantum kernels (QK) are widely used in quantum machine learning applications.
However, their potential to surpass classical machine learning methods on classical datasets remains uncertain.
We show that bandwidth tuning results in QKs that closely resemble radial basis function (RBF) kernels.
arXiv Detail & Related papers (2025-03-07T17:28:02Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - Benchmarking of quantum fidelity kernels for Gaussian process regression [1.7287035469433212]
Quantum computing algorithms have been shown to produce performant quantum kernels for machine-learning classification problems.
We show that quantum kernels can achieve the same, though not better, expressivity as classical kernels for regression problems.
arXiv Detail & Related papers (2024-07-22T18:19:48Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
arXiv Detail & Related papers (2024-05-02T23:45:29Z) - QUACK: Quantum Aligned Centroid Kernel [0.0]
We introduce QUACK, a quantum kernel algorithm whose time complexity scales linear with the number of samples during training.
Our algorithm is able to handle high-dimensional datasets such as MNIST with 784 features without any dimensionality reduction.
arXiv Detail & Related papers (2024-05-01T04:00:09Z) - Towards Efficient Quantum Anomaly Detection: One-Class SVMs using
Variable Subsampling and Randomized Measurements [4.180897432770239]
Quantum computing allows significant advancements in kernel calculation and model precision.
We present two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method.
Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively.
Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel.
arXiv Detail & Related papers (2023-12-14T17:42:18Z) - Quantum Kernel Estimation With Neutral Atoms For Supervised
Classification: A Gate-Based Approach [0.6445605125467573]
Quantum Kernel Estimation (QKE) is a technique based on leveraging a quantum computer to estimate a kernel function.
neutral atom quantum computers can be used, since they allow to arrange the atoms with more freedom.
This paper proposes an algorithm for explicitly deriving a universal set of gates and presents a method of estimating quantum kernels on neutral atom devices.
arXiv Detail & Related papers (2023-07-28T23:56:26Z) - Quantum-Classical Multiple Kernel Learning [0.0]
Kernel methods in machine learning is one area where such improvements could be realized in the future.
Small and noisy quantum computers can evaluate classically-parametric quantum kernels that capture unique notions of similarity in data.
We consider pairwise combinations of classical, quantum-quantum, quantum-classical and QC kernels in the context of multiple kernel (MKL)
We show this approach to be effective for enhancing various metrics performance in an MKL setting.
arXiv Detail & Related papers (2023-05-28T12:29:04Z) - Parallel hybrid quantum-classical machine learning for kernelized
time-series classification [0.0]
We tackle with hybrid quantum-classical machine, deducing temporal temporal between pairwise instances using a time-series Hamiltonian (TSHK) algorithm.
Because we treat the kernel weighting step as a differentiable differentiable kernel function, our method can be regarded as an end learnable hybrid quantum-series techniques.
arXiv Detail & Related papers (2023-05-10T04:01:15Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.