Floquet geometric entangling gates in ground-state manifolds of Rydberg atoms
- URL: http://arxiv.org/abs/2405.00471v2
- Date: Wed, 3 Jul 2024 13:21:21 GMT
- Title: Floquet geometric entangling gates in ground-state manifolds of Rydberg atoms
- Authors: Hao-Wen Sun, Jin-Lei Wu, Shi-Lei Su,
- Abstract summary: We propose new applications of Floquet theory in Rydberg atoms for constructing quantum entangling gates.
Error-resilient two-qubit entangling gates can be implemented in the regime of Rydberg blockade.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose new applications of Floquet theory in Rydberg atoms for constructing quantum entangling gates in atomic ground-state manifolds. By dynamically periodically modulating the Rabi frequencies of transitions between ground and Rydberg states of atoms, error-resilient two-qubit entangling gates can be implemented in the regime of Rydberg blockade. According to different degrees of Floquet theory utilization, the fidelity of the resulting controlled gates surpasses that of the original reference, and it exhibits high robustness against Rabi error in two qubits and detuning error in the control qubit. Our method only uses encoding in the ground states, and compared to the original scheme using Rydberg state for encoding, it is less susceptible to environmental interference, making it more practical to implement. Therefore, our approach may have broader applications or potential for further expansion of geometric quantum computation with neutral atoms.
Related papers
- A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Entangling quantum logic gates in neutral atoms via the microwave-driven
spin-flip blockade [0.0]
We present an alternative protocol to implement entangling gates via Rydberg dressing and a microwave-field-driven spin-flip blockade.
We show that unlike the strong dipole-blockade regime usually employed in Rydberg experiments, going to a moderate-spin-flip-blockade regime results in faster gates and smaller Rydberg decay.
arXiv Detail & Related papers (2023-07-31T06:41:26Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Floquet-Tailored Rydberg Interactions [0.0]
Rydberg blockade is a key ingredient for entangling atoms in arrays.
We demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius.
We realize Rydberg anti-blockade states for two sodium Rydberg atoms within the blockade radius.
arXiv Detail & Related papers (2023-06-14T15:57:07Z) - Electron cloud design for Rydberg multi-qubit gates [0.0]
This article proposes quantum processing in an optical lattice, using Rydberg electron's Fermi scattering from ground-state atoms.
The interaction is controlled by engineering the electron cloud of a sole Rydberg atom.
The features in the new scheme are of special interest for the implementation of quantum optimization and error correction algorithms.
arXiv Detail & Related papers (2021-11-02T13:17:10Z) - Engineering, control and longitudinal readout of Floquet qubits [105.9098786966493]
Time-periodic Hamiltonians can be exploited to increase the dephasing time of qubits and to design protected one and two-qubit gates.
Here, we use the framework of many-mode Floquet theory to describe approaches to robustly control Floquet qubits in the presence of multiple drive tones.
Following the same approach, we introduce a longitudinal readout protocol to measure the Floquet qubit without the need of first adiabatically mapping back the Floquet states to the static qubit states.
arXiv Detail & Related papers (2021-08-25T14:35:02Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Resilient quantum gates on periodically driven Rydberg atoms [10.602950162554212]
The platform of Rydberg atoms is one of the most promising candidates for achieving quantum computation.
We propose a controlled-$Z$ gate on Rydberg atoms where an amplitude-modulated field is employed to induce Rydberg antiblockade.
We generalize the gate scheme into multiqubit cases, where resilient multiqubit phase gates can be obtained in one step with an unchanged gate time as the number of qubits increases.
arXiv Detail & Related papers (2021-01-07T02:13:18Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - Rydberg Entangling Gates in Silicon [62.997667081978825]
We propose a new Rydberg entangling gate scheme which we demonstrate theoretically to have an order of magnitude improvement in fidelities and speed over existing protocols.
We find that applying this gate to donors in silicon would help overcome the strenuous requirements on atomic precision donor placement and substantial gate tuning.
We show that Rydberg gate operation is possible within the lifetime of donor excited states with 99.9% fidelity for the creation of a Bell state in the presence of decoherence.
arXiv Detail & Related papers (2020-08-26T18:00:02Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.