論文の概要: Federated Graph Learning for EV Charging Demand Forecasting with Personalization Against Cyberattacks
- arxiv url: http://arxiv.org/abs/2405.00742v1
- Date: Tue, 30 Apr 2024 05:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 20:52:21.451834
- Title: Federated Graph Learning for EV Charging Demand Forecasting with Personalization Against Cyberattacks
- Title(参考訳): サイバー攻撃に対するパーソナライズによるEV需要予測のためのフェデレーショングラフ学習
- Authors: Yi Li, Renyou Xie, Chaojie Li, Yi Wang, Zhaoyang Dong,
- Abstract要約: 電気自動車(EV)の充電需要予測におけるサイバーセキュリティリスクの軽減は、集合EV充電の安全運用、電力グリッドの安定性、コスト効率のよいインフラ拡張において重要な役割を担っている。
既存の方法は、データのプライバシー問題とサイバー攻撃への感受性に悩まされるか、異なるステーション間の空間的相関を考慮できないかのいずれかである。
- 参考スコア(独自算出の注目度): 9.83349306361658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating cybersecurity risk in electric vehicle (EV) charging demand forecasting plays a crucial role in the safe operation of collective EV chargings, the stability of the power grid, and the cost-effective infrastructure expansion. However, existing methods either suffer from the data privacy issue and the susceptibility to cyberattacks or fail to consider the spatial correlation among different stations. To address these challenges, a federated graph learning approach involving multiple charging stations is proposed to collaboratively train a more generalized deep learning model for demand forecasting while capturing spatial correlations among various stations and enhancing robustness against potential attacks. Firstly, for better model performance, a Graph Neural Network (GNN) model is leveraged to characterize the geographic correlation among different charging stations in a federated manner. Secondly, to ensure robustness and deal with the data heterogeneity in a federated setting, a message passing that utilizes a global attention mechanism to aggregate personalized models for each client is proposed. Thirdly, by concerning cyberattacks, a special credit-based function is designed to mitigate potential threats from malicious clients or unwanted attacks. Extensive experiments on a public EV charging dataset are conducted using various deep learning techniques and federated learning methods to demonstrate the prediction accuracy and robustness of the proposed approach.
- Abstract(参考訳): 電気自動車(EV)の充電需要予測におけるサイバーセキュリティリスクの軽減は、集合EV充電の安全運用、電力グリッドの安定性、コスト効率のよいインフラ拡張において重要な役割を担っている。
しかし、既存の手法は、データのプライバシー問題とサイバー攻撃への感受性に悩まされるか、異なるステーション間の空間的相関を考慮できないかのいずれかである。
これらの課題に対処するために、複数の充電ステーションを含む連合グラフ学習手法を提案し、様々なステーション間の空間的相関を捉え、潜在的攻撃に対する堅牢性を高めながら、需要予測のためのより一般化されたディープラーニングモデルを協調的に訓練する。
まず、モデルの性能向上のために、グラフニューラルネットワーク(GNN)モデルを用いて、異なる充電ステーション間の地理的相関をフェデレートした方法で特徴付ける。
次に、フェデレーション設定におけるロバスト性を確保し、データ不均一性に対処するため、クライアント毎にパーソナライズされたモデルを集約するグローバルアテンション機構を利用したメッセージパッシングを提案する。
第3に、サイバー攻撃に関して、悪意のあるクライアントや望ましくない攻撃からの潜在的な脅威を軽減するために、特別なクレジットカードベースの機能が設計されている。
提案手法の予測精度とロバスト性を示すために,様々なディープラーニング技術とフェデレーション学習手法を用いて,パブリックEV充電データセットの大規模な実験を行った。
関連論文リスト
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
本稿では,安定したデータのみを用いて,スマートグリッドの不安定性を検出する新しいフレームワークを提案する。
ジェネレータはGAN(Generative Adversarial Network)に依存しており、ジェネレータは不安定なデータを生成するために訓練される。
我々の解は、実世界の安定と不安定なサンプルからなるデータセットでテストされ、格子安定性の予測において最大97.5%、敵攻撃の検出において最大98.9%の精度を達成する。
論文 参考訳(メタデータ) (2025-01-27T20:48:25Z) - Prompt-based Unifying Inference Attack on Graph Neural Networks [24.85661326294946]
グラフニューラルネットワーク(GNN)上での新規なPromptベースの統一推論攻撃フレームワークを提案する。
ProIAは、事前学習中にグラフの重要なトポロジ情報を保持し、推論攻撃モデルの背景知識を高める。
次に、統一的なプロンプトを利用し、ダウンストリームアタックにおいてタスク関連知識に適応するために、さらなる混乱要因を導入する。
論文 参考訳(メタデータ) (2024-12-20T09:56:17Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
電力グリッドのインフラと通信のダイナミクスを再現するシミュレーション環境を導入する。
このフレームワークは多様なリアルな攻撃データを生成し、サイバー脅威を検出し緩和するための機械学習アルゴリズムを訓練する。
また、高度な意思決定支援システムを含む、新興のセキュリティ技術を評価するための、制御された柔軟なプラットフォームも提供する。
論文 参考訳(メタデータ) (2024-12-09T07:07:17Z) - Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
本稿では,複数の電気自動車充電ステーション(EVCS)の階層的確率的予測問題について検討する。
各充電ステーションに対して、部分入力凸ニューラルネットワーク(PICNN)に基づくディープラーニングモデルを訓練し、日頭充電需要の条件分布を予測する。
微分凸最適化層(DCL)は、分布からサンプリングされたシナリオを再構成し、一貫性のあるシナリオを生成する。
論文 参考訳(メタデータ) (2024-11-01T03:35:04Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:27:55Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。