論文の概要: ChatGPT in Data Visualization Education: A Student Perspective
- arxiv url: http://arxiv.org/abs/2405.00748v1
- Date: Wed, 1 May 2024 02:40:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 20:52:21.436623
- Title: ChatGPT in Data Visualization Education: A Student Perspective
- Title(参考訳): データ可視化教育におけるChatGPT : 学生の視点から
- Authors: Nam Wook Kim, Hyung-Kwon Ko, Grace Myers, Benjamin Bach,
- Abstract要約: 本研究では,これらの技術が学際的,プロジェクト指向のデータ可視化コースにおける学生の学習に与える影響について検討する。
データビジュアライゼーションやTableau、D3、Vega-liteなど、さまざまなツールを使ってChatGPTを実装している。
分析では,ChatGPTの活用のメリットと障壁,学生の質問行動,支援のタイプ,課題の成果とエンゲージメントに与える影響について検討した。
- 参考スコア(独自算出の注目度): 19.58123915686711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike traditional educational chatbots that rely on pre-programmed responses, large-language model-driven chatbots, such as ChatGPT, demonstrate remarkable versatility and have the potential to serve as a dynamic resource for addressing student needs from understanding advanced concepts to solving complex problems. This work explores the impact of such technology on student learning in an interdisciplinary, project-oriented data visualization course. Throughout the semester, students engaged with ChatGPT across four distinct projects, including data visualizations and implementing them using a variety of tools including Tableau, D3, and Vega-lite. We collected conversation logs and reflection surveys from the students after each assignment. In addition, we conducted interviews with selected students to gain deeper insights into their overall experiences with ChatGPT. Our analysis examined the advantages and barriers of using ChatGPT, students' querying behavior, the types of assistance sought, and its impact on assignment outcomes and engagement. Based on the findings, we discuss design considerations for an educational solution that goes beyond the basic interface of ChatGPT, specifically tailored for data visualization education.
- Abstract(参考訳): 事前にプログラムされた応答に依存する従来の教育チャットボットとは異なり、ChatGPTのような大規模言語モデル駆動チャットボットは、優れた汎用性を示し、高度な概念理解から複雑な問題を解決するための動的リソースとして機能する可能性がある。
本研究では,これらの技術が学際的,プロジェクト指向のデータ可視化コースにおける学生の学習に与える影響について検討する。
学期を通じて、データ視覚化やTableau、D3、Vega-liteといったさまざまなツールを使ってChatGPTを実践する4つの異なるプロジェクトに従事した。
課題の後に学生の会話記録とリフレクション調査を収集した。
また,ChatGPTの総合的経験を深く把握するために,選ばれた学生へのインタビューを行った。
分析では,ChatGPTの活用のメリットと障壁,学生の質問行動,支援のタイプ,課題の成果とエンゲージメントに与える影響について検討した。
本研究は,ChatGPTの基本インターフェースを超越した,データ可視化教育に適した教育ソリューションの設計について考察する。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions [35.927734064685886]
本稿では、学生のプロンプトの時間パターンとChatGPTの応答の質を複数のスケールで追跡・比較する視覚分析システム、StuGPTVizを提案する。
その結果、StuGPTVizがChatGPTの教育的価値に対する教育者の洞察を高める能力があることが確認された。
論文 参考訳(メタデータ) (2024-07-17T09:20:44Z) - Generating Situated Reflection Triggers about Alternative Solution Paths: A Case Study of Generative AI for Computer-Supported Collaborative Learning [3.2721068185888127]
本稿では,学生に動的かつ文脈的フィードバックを提供する概念実証アプリケーションを提案する。
具体的には、ChatGPTを使って、大学レベルのクラウドコンピューティングコースのためのオンラインプログラミング演習ボットを拡張します。
LLMは、コンテキスト内で発生する協調的な議論の詳細を組み込んだ、高度に位置決めされたリフレクショントリガを生成するために使用できることを実証する。
論文 参考訳(メタデータ) (2024-04-28T17:56:14Z) - Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course [7.182952031323369]
本稿では,8週間にわたる1年生向けのPythonプログラミングコースにおいて,ChatGPTが学習に与える影響について検討する。
調査,オープンエンド質問,学生-ChatGPTダイアログデータからの回答を分析して,ChatGPTの有用性を総合的に把握することを目的とする。
本研究は,ChatGPTに対する肯定的な反応を明らかにし,プログラミング教育経験の向上におけるChatGPTの役割について考察する。
論文 参考訳(メタデータ) (2024-03-20T15:47:28Z) - Visual In-Context Learning for Large Vision-Language Models [62.5507897575317]
大規模視覚言語モデル(LVLM)では、言語間相互作用や表現格差の課題により、ICL(In-Context Learning)の有効性が制限されている。
本稿では,視覚的記述型検索,意図的画像要約,意図的記述型合成を含む新しい視覚的記述型学習(VICL)手法を提案する。
提案手法は'Retrieval & Rerank'パラダイムを用いて画像を検索し,タスク意図とタスク固有の視覚的パーシングで画像を要約し,言語による実演を構成する。
論文 参考訳(メタデータ) (2024-02-18T12:43:38Z) - Integrating ChatGPT in a Computer Science Course: Students Perceptions
and Suggestions [0.0]
本経験報告では,ChatGPTをコンピュータサイエンス科目に統合するための学生の認識と提案について考察する。
計算機科学科目では,ChatGPTを用いて慎重にバランスをとることが重要である。
論文 参考訳(メタデータ) (2023-12-22T10:48:34Z) - Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation
Models [55.11367495777145]
ChatGPTは、多くのドメインにまたがる優れた会話能力と推論機能を備えた言語インターフェースを提供するため、分野横断の関心を集めている。
しかし、ChatGPTは言語で訓練されているため、視覚世界からの画像の処理や生成はできない。
Visual ChatGPTは、さまざまなVisual Foundation Modelsの助けを借りて、ChatGPTの視覚的役割を調べるための扉を開く。
論文 参考訳(メタデータ) (2023-03-08T15:50:02Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
本稿では,視覚的摂動校正の観点から,新しい協調学習手法を提案する。
具体的には、異なる摂動範囲で2種類のキュレートされた画像を構築するための視覚コントローラを考案する。
2つの診断VQA-CPベンチマークデータセットの実験結果は、その効果を明らかに示している。
論文 参考訳(メタデータ) (2022-07-24T23:50:52Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
パーソナライゼーションとアクティブラーニングは、学習の成功の鍵となる側面です。
私たちは2つの人気のあるオンライン学習プラットフォームの学習結果の比較正面調査を実施します。
論文 参考訳(メタデータ) (2021-04-15T20:40:24Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。