論文の概要: MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information
- arxiv url: http://arxiv.org/abs/2405.01065v1
- Date: Thu, 2 May 2024 07:44:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:23:40.783611
- Title: MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information
- Title(参考訳): MFDS-Net:グローバルセマンティック・詳細情報を用いたリモートセンシング変化検出のためのマルチスケール特徴深度監視ネットワーク
- Authors: Zhenyang Huang, Zhaojin Fu, Song Jintao, Genji Yuan, Jinjiang Li,
- Abstract要約: MFDS-Net:グローバルセマンティックおよび詳細情報を用いたリモートセンシング変更検出のためのマルチスケール特徴深度監視ネットワークを提案する。
本研究では,従来のコンボリューションの代替として,ResNet_34をバックボーンネットワークとして,特徴抽出とDO-Convを行う。
MFDS-Netの実験結果は、現在の主流変更検出ネットワークを上回ります。
- 参考スコア(独自算出の注目度): 7.870130182071329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection as an interdisciplinary discipline in the field of computer vision and remote sensing at present has been receiving extensive attention and research. Due to the rapid development of society, the geographic information captured by remote sensing satellites is changing faster and more complex, which undoubtedly poses a higher challenge and highlights the value of change detection tasks. We propose MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (MFDS-Net) with the aim of achieving a more refined description of changing buildings as well as geographic information, enhancing the localisation of changing targets and the acquisition of weak features. To achieve the research objectives, we use a modified ResNet_34 as backbone network to perform feature extraction and DO-Conv as an alternative to traditional convolution to better focus on the association between feature information and to obtain better training results. We propose the Global Semantic Enhancement Module (GSEM) to enhance the processing of high-level semantic information from a global perspective. The Differential Feature Integration Module (DFIM) is proposed to strengthen the fusion of different depth feature information, achieving learning and extraction of differential features. The entire network is trained and optimized using a deep supervision mechanism. The experimental outcomes of MFDS-Net surpass those of current mainstream change detection networks. On the LEVIR dataset, it achieved an F1 score of 91.589 and IoU of 84.483, on the WHU dataset, the scores were F1: 92.384 and IoU: 86.807, and on the GZ-CD dataset, the scores were F1: 86.377 and IoU: 76.021. The code is available at https://github.com/AOZAKIiii/MFDS-Net
- Abstract(参考訳): コンピュータビジョンとリモートセンシングの分野における学際的分野としての変革検出は,近年広く注目されている。
社会の急速な発展により、リモートセンシング衛星によって捉えられた地理情報は、より速く、より複雑に変化しており、これは間違いなくより高い課題をもたらし、変化検出タスクの価値を強調している。
MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:MFDS-Net:M FDS-Net:MFDS-Net。
本研究の目的は,ResNet_34 をバックボーンネットワークとして改良し,従来の畳み込みの代替として特徴抽出と DO-Conv を行い,特徴情報の関連性に着目し,より良いトレーニング結果を得ることである。
グローバルな視点から高レベルの意味情報の処理を強化するためのグローバルセマンティック・エンハンスメント・モジュール(GSEM)を提案する。
差分特徴統合モジュール(DFIM)は,異なる深度特徴情報の融合を強化し,学習と差分特徴の抽出を実現するために提案される。
ネットワーク全体が、深い監視メカニズムを使用してトレーニングされ、最適化される。
MFDS-Netの実験結果は、現在の主流変更検出ネットワークを上回ります。
LEVIRデータセットでは、F1スコアが91.589、IoUが84.483、スコアがF1:92.384、IoUが86.807、GZ-CDデータセットではF1:86.377、IoUが76.021であった。
コードはhttps://github.com/AOZAKIiii/MFDS-Netで入手できる。
関連論文リスト
- SpecSAR-Former: A Lightweight Transformer-based Network for Global LULC Mapping Using Integrated Sentinel-1 and Sentinel-2 [13.17346252861919]
我々はDynamic World+データセットを導入し、現在の信頼できるマルチスペクトルデータセットDynamic Worldを拡張した。
マルチスペクトルとSARデータの組み合わせを容易にするために,SpecSAR-Formerと呼ばれる軽量トランスフォーマアーキテクチャを提案する。
我々のネットワークは、既存のトランスフォーマーとCNNベースのモデルより優れており、平均的なユニオンのインターセクション(mIoU)は59.58%、総合的精度(OA)は79.48%、F1スコアは71.68%、パラメータは26.70万である。
論文 参考訳(メタデータ) (2024-10-04T22:53:25Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D
Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - Dsfer-Net: A Deep Supervision and Feature Retrieval Network for Bitemporal Change Detection Using Modern Hopfield Networks [35.415260892693745]
本稿では,バイテンポラル変化検出のためのDeep Supervision and feature Retrieval Network (Dsfer-Net)を提案する。
具体的には、バイテンポラル画像の高度に代表的な深い特徴を、完全に畳み込みされたシームズネットワークを通じて、共同で抽出する。
エンド・ツー・エンドのネットワークは,異なるレイヤから抽出した特徴と特徴のペアを集約することで,新たなフレームワークを確立する。
論文 参考訳(メタデータ) (2023-04-03T16:01:03Z) - An Attention-Fused Network for Semantic Segmentation of
Very-High-Resolution Remote Sensing Imagery [26.362854938949923]
注目融合ネットワーク(AFNet)という,新しい畳み込みニューラルネットワークアーキテクチャを提案する。
ISPRS Vaihingen 2DデータセットとISPRS Potsdam 2Dデータセットで、総精度91.7%、平均F1スコア90.96%の最先端のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-10T06:23:27Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。