論文の概要: Hypergraph $p$-Laplacian regularization on point clouds for data interpolation
- arxiv url: http://arxiv.org/abs/2405.01109v1
- Date: Thu, 2 May 2024 09:17:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:13:51.764034
- Title: Hypergraph $p$-Laplacian regularization on point clouds for data interpolation
- Title(参考訳): データ補間のための点雲上のハイパーグラフ$p$-ラプラシアン正規化
- Authors: Kehan Shi, Martin Burger,
- Abstract要約: ハイパーグラフはデータの高次関係をモデル化するために広く使われている。
点クラウド上の$varepsilon_n$-ballハイパーグラフと$k_n$-nearest 近傍ハイパーグラフを定義する。
半教師付き環境でのハイパーグラフ$p$-ラプラシアン正則化と$p$-ラプラシアン正則化の間の変分一貫性を証明した。
- 参考スコア(独自算出の注目度): 3.79830302036482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a generalization of graphs, hypergraphs are widely used to model higher-order relations in data. This paper explores the benefit of the hypergraph structure for the interpolation of point cloud data that contain no explicit structural information. We define the $\varepsilon_n$-ball hypergraph and the $k_n$-nearest neighbor hypergraph on a point cloud and study the $p$-Laplacian regularization on the hypergraphs. We prove the variational consistency between the hypergraph $p$-Laplacian regularization and the continuum $p$-Laplacian regularization in a semisupervised setting when the number of points $n$ goes to infinity while the number of labeled points remains fixed. A key improvement compared to the graph case is that the results rely on weaker assumptions on the upper bound of $\varepsilon_n$ and $k_n$. To solve the convex but non-differentiable large-scale optimization problem, we utilize the stochastic primal-dual hybrid gradient algorithm. Numerical experiments on data interpolation verify that the hypergraph $p$-Laplacian regularization outperforms the graph $p$-Laplacian regularization in preventing the development of spikes at the labeled points.
- Abstract(参考訳): グラフの一般化として、ハイパーグラフはデータの高次関係をモデル化するために広く使われている。
本稿では,明示的な構造情報を持たない点雲データの補間に対するハイパーグラフ構造の利点を考察する。
点クラウド上の$\varepsilon_n$-ballハイパーグラフと$k_n$-nearest 近傍ハイパーグラフを定義し、ハイパーグラフ上の$p$-Laplacian正規化について検討する。
超グラフ $p$-Laplacian 正規化と連続$p$-Laplacian 正規化の間の変分一貫性を半教師付き環境で証明する。
グラフの場合と比較して重要な改善点は、結果はより弱い仮定が$\varepsilon_n$と$k_n$の上限に依存することである。
凸だが微分不可能な大規模最適化問題を解くために,確率的原始-双対ハイブリッド勾配アルゴリズムを用いる。
データ補間に関する数値実験により、ハイパーグラフ$p$-ラプラシアン正規化はグラフ$p$-ラプラシアン正規化よりも優れており、ラベル付き点でのスパイクの発生を防ぐことができる。
関連論文リスト
- Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
ランダムグラフにおける植込み高密度部分グラフの検出は、基本的な統計的および計算上の問題である。
我々は、$Gr(n, n-beta)ハイパーグラフにおいて、植えた$Gr(ngamma, n-alpha)$ subhypergraphの存在を検出することを検討する。
平均値の減少に基づく硬さが不明な微妙な対数密度構造を考えると,この結果はグラフの場合$r=2$で既に新しくなっている。
論文 参考訳(メタデータ) (2023-04-17T10:38:08Z) - Rates of Convergence for Regression with the Graph Poly-Laplacian [3.222802562733786]
より高次規則性は、ラプラシア正規化器をポリラプラシア正規化器に置き換えることで得られる。
完全教師付き、非パラメトリック、ノイズ劣化、回帰問題におけるグラフポリラプラシア正規化を考察する。
論文 参考訳(メタデータ) (2022-09-06T08:59:15Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
強い反相関を持つデータセットに対して、適切なグラフは正および負のエッジ重みの両方を含むことを示す。
本稿では,平衡符号グラフの概念に着目した線形時間符号グラフサンプリング手法を提案する。
実験結果から, 署名付きグラフサンプリング手法は, 各種データセットにおいて, 既存の高速サンプリング方式よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-18T09:19:01Z) - Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise [10.418647759223965]
双確率正規化 (bi-stochastic normalization) はグラフベースのデータ解析においてグラフラプラシアンの代替正規化を提供する。
両階層正規化グラフ Laplacian から (重み付き) Laplacian への収束を速度で証明する。
多様体データが外乱ノイズによって破損した場合、理論的にはラプラシア点の整合性を証明する。
論文 参考訳(メタデータ) (2022-06-22T21:08:24Z) - Core-periphery Models for Hypergraphs [0.0]
コア周辺構造に対するランダムなハイパーグラフモデルを提案する。
我々は,実際に線形wrtを持つ大規模ハイパーグラフにスケール可能な,新しい統計的推論アルゴリズムを開発した。
我々の推論アルゴリズムはハイパーグラフ内のノードの評判(ランク)に対応する埋め込みを学習することができる。
論文 参考訳(メタデータ) (2022-06-01T22:11:44Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
我々は、グラフ畳み込みネットワーク(GCN)を構築するために使用される生成グラフモデルを導入することにより、グラフに非グラフデータセットを変換する方法を示す。
アンカーによって構築された二部グラフは、データの背後にある高レベル情報を利用するために動的に更新される。
理論的には、単純な更新が退化につながることを証明し、それに従って特定の戦略が設計される。
論文 参考訳(メタデータ) (2021-11-12T07:08:13Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - Recurrently Predicting Hypergraphs [30.092688729343678]
問題は、$n$要素の集合に対して$mathcalO(2n)$でスケーリング可能なマルチウェイ関係(ハイパーエッジ)の数から生じる。
そこで本研究では,提案手法の初期推定を反復的に精算することにより,入射行列を予測する再帰型ハイパーグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-26T01:12:41Z) - Projection-free Graph-based Classifier Learning using Gershgorin Disc
Perfect Alignment [59.87663954467815]
グラフベースのバイナリ学習では、既知のラベルのサブセット$hatx_i$を使って未知のラベルを推論する。
ラベルの$x_i$をバイナリ値に制限する場合、問題はNPハードである。
代わりに線形プログラム(LP)の列を解くことにより,高速なプロジェクションフリー手法を提案する。
論文 参考訳(メタデータ) (2021-06-03T07:22:48Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
実用的な単一ループ加速勾配追跡には$O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$が必要であることを証明している。
我々の収束率は$O(frac1epsilon5/7)$と$O(fracLmu)5/7frac1(1-sigma)1.5logfrac1epsilon)$よりも大幅に改善した。
論文 参考訳(メタデータ) (2021-04-06T15:34:14Z) - Semi-supervised Hypergraph Node Classification on Hypergraph Line
Expansion [7.933465724913661]
本稿では,ハイパーグラフ学習のためのEmphline expansion (LE) という新しいハイパーグラフの定式化を提案する。
提案手法は,既存のグラフ学習アルゴリズムを高次構造に適合させる。
提案手法を5つのハイパーグラフデータセット上で評価し,提案手法がSOTAベースラインを有意差で上回ることを示す。
論文 参考訳(メタデータ) (2020-05-11T03:02:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。