論文の概要: Lying Graph Convolution: Learning to Lie for Node Classification Tasks
- arxiv url: http://arxiv.org/abs/2405.01247v1
- Date: Thu, 2 May 2024 12:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:34:40.922563
- Title: Lying Graph Convolution: Learning to Lie for Node Classification Tasks
- Title(参考訳): Lying Graph Convolution: ノードの分類タスクに嘘を学ぶ
- Authors: Daniele Castellana,
- Abstract要約: ディープグラフネットワーク(DGN)は、グラフ構造がホモ親和性である場合、ノード分類タスクにおいて好適に機能する。
ヘテロ親和性とホモ親和性の両方で適応的に機能する新しいDGNであるLying-GCNを導入する。
我々は, 人工と実世界の両方のデータセットに対する我々の信念を実証的に証明し, 嘘つきのメカニズムは, ホモ親和性のあるセッティングの結果を損なうことなく, ヘテロ親和性のセッティングにおける性能を向上させることができることを示した。
- 参考スコア(独自算出の注目度): 1.6860963320038902
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the context of machine learning for graphs, many researchers have empirically observed that Deep Graph Networks (DGNs) perform favourably on node classification tasks when the graph structure is homophilic (\ie adjacent nodes are similar). In this paper, we introduce Lying-GCN, a new DGN inspired by opinion dynamics that can adaptively work in both the heterophilic and the homophilic setting. At each layer, each agent (node) shares its own opinions (node embeddings) with its neighbours. Instead of sharing its opinion directly as in GCN, we introduce a mechanism which allows agents to lie. Such a mechanism is adaptive, thus the agents learn how and when to lie according to the task that should be solved. We provide a characterisation of our proposal in terms of dynamical systems, by studying the spectral property of the coefficient matrix of the system. While the steady state of the system collapses to zero, we believe the lying mechanism is still usable to solve node classification tasks. We empirically prove our belief on both synthetic and real-world datasets, by showing that the lying mechanism allows to increase the performances in the heterophilic setting without harming the results in the homophilic one.
- Abstract(参考訳): グラフの機械学習の文脈において、ディープグラフネットワーク(DGN)がグラフ構造がホモフィル性である場合(隣接するノードは類似している)、ノード分類タスクにおいて好適に機能することが実証されている。
本稿では、ヘテロ親和性およびホモ親和性の両方で適応的に機能する新しいDGNであるLying-GCNを紹介する。
各レイヤでは、各エージェント(ノード)がそれぞれの意見(ノード埋め込み)を隣人と共有する。
GCNのように直接意見を共有するのではなく、エージェントが嘘をつくことができるメカニズムを導入します。
このようなメカニズムは適応的であるため、エージェントは解決すべきタスクに応じてどのように、いつ嘘をつくかを学ぶ。
系の係数行列のスペクトル特性を研究することにより,力学系の観点から提案手法の特徴付けを行う。
系の定常状態はゼロに崩壊するが、ノード分類タスクを解くのに依然として嘘つきのメカニズムが利用できると我々は信じている。
我々は, 人工と実世界の両方のデータセットに対する我々の信念を実証的に証明し, 嘘つきのメカニズムは, ホモ親和性のあるセッティングにおける結果に害を加えることなく, ヘテロ親和性のセッティングにおけるパフォーマンスを向上させることができることを示した。
関連論文リスト
- Graph Classification with GNNs: Optimisation, Representation and Inductive Bias [0.6445605125467572]
このような等価性は、付随する最適化問題を無視するものであり、GNN学習プロセスの全体像を提供するものではない、と我々は主張する。
理論的には、グラフ内のメッセージパッシング層は、識別サブグラフか、あるいはグラフ全体に分散した識別ノードの集合を探索する傾向にあることを証明している。
論文 参考訳(メタデータ) (2024-08-17T18:15:44Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Heterophilous Distribution Propagation for Graph Neural Networks [23.897535976924722]
グラフニューラルネットワークのための異種分布伝播(HDP)を提案する。
すべての近隣から情報を集約する代わりに、HDPは隣人をホモ親和性および不テロ親和性の部分に適応的に分離する。
我々は、異なるレベルのホモフィリーを持つ9つのベンチマークデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2024-05-31T06:40:56Z) - Refining Latent Homophilic Structures over Heterophilic Graphs for
Robust Graph Convolution Networks [23.61142321685077]
グラフ畳み込みネットワーク(GCN)は、空間データから知識を抽出するために様々なグラフタスクで広く利用されている。
本研究は,ノード分類のための全表現不均一グラフ上のGCNロバスト性について定量的に検討する先駆的な試みである。
ヘテロ親和性グラフ上の潜在ホモ親和性構造を自動的に学習し,GCNを硬化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-27T05:35:14Z) - HomoGCL: Rethinking Homophily in Graph Contrastive Learning [64.85392028383164]
HomoGCL はモデルに依存しないフレームワークで、近隣のノードに固有の意味を持つ正の集合を拡大する。
我々は、HomoGCLが6つの公開データセットにまたがって複数の最先端結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-16T04:06:52Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
ほとんどの実世界のホモフィルグラフとヘテロフィルグラフは、ホモフィルグラフとヘテロフィルグラフの両方の構造パターンの混合ノードから構成される。
ノード分類におけるグラフニューラルネットワーク (GNN) は, 一般にホモ親和性ノード上で良好に機能することを示す。
次に、GNNに対する厳密で非I.d PAC-Bayesian一般化を提案し、性能格差の理由を明らかにした。
論文 参考訳(メタデータ) (2023-06-02T07:46:20Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。