Advancing Frontiers in SLAM: A Survey of Symbolic Representation and Human-Machine Teaming in Environmental Mapping
- URL: http://arxiv.org/abs/2405.01398v1
- Date: Fri, 22 Mar 2024 00:48:48 GMT
- Title: Advancing Frontiers in SLAM: A Survey of Symbolic Representation and Human-Machine Teaming in Environmental Mapping
- Authors: Brandon Curtis Colelough,
- Abstract summary: The paper synthesizes research trends in multi-agent systems (MAS) and human-machine teaming, highlighting their applications in both symbolic and sub-symbolic SLAM tasks.
The study acknowledges the growing demand for enhanced human-machine collaboration in mapping tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This survey paper presents a comprehensive overview of the latest advancements in the field of Simultaneous Localization and Mapping (SLAM) with a focus on the integration of symbolic representation of environment features. The paper synthesizes research trends in multi-agent systems (MAS) and human-machine teaming, highlighting their applications in both symbolic and sub-symbolic SLAM tasks. The survey emphasizes the evolution and significance of ontological designs and symbolic reasoning in creating sophisticated 2D and 3D maps of various environments. Central to this review is the exploration of different architectural approaches in SLAM, with a particular interest in the functionalities and applications of edge and control agent architectures in MAS settings. This study acknowledges the growing demand for enhanced human-machine collaboration in mapping tasks and examines how these collaborative efforts improve the accuracy and efficiency of environmental mapping
Related papers
- Creativity in LLM-based Multi-Agent Systems: A Survey [56.25583236738877]
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts.<n>This is the first survey dedicated to creativity in MAS.<n>We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks.
arXiv Detail & Related papers (2025-05-27T12:36:14Z) - SITE: towards Spatial Intelligence Thorough Evaluation [121.1493852562597]
Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships.<n>We introduce SITE, a benchmark dataset towards SI Thorough Evaluation.<n>Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science.
arXiv Detail & Related papers (2025-05-08T17:45:44Z) - Uncovering Key Features for Model-Driven Engineering of Complex Performance Indicators: A Scoping Review [0.9208007322096533]
This paper addresses challenges of designing and managing Complex Performance Indicators (CPI)<n>CPI amalgamates individual indicators to measure latent, yet crucial business factors like customer satisfaction or sustainability indices.<n>Model-Driven Engineering (MDE) emerges as a potent solution to overcome these hurdles and ensure CPI adoption.
arXiv Detail & Related papers (2025-05-07T15:20:52Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.
Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.
This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
arXiv Detail & Related papers (2025-02-17T07:39:34Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.
Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.
To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - Semantic Mapping in Indoor Embodied AI -- A Comprehensive Survey and Future Directions [10.655606296339055]
A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning.
This paper provides a review of semantic map-building approaches in embodied AI, specifically for indoor navigation.
We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations.
arXiv Detail & Related papers (2025-01-10T06:58:14Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions [68.92637077909693]
This paper investigates the faithfulness of multimodal large language model (MLLM) agents in a graphical user interface (GUI) environment.<n>A general scenario is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content.<n> Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions.
arXiv Detail & Related papers (2024-08-05T15:16:22Z) - Cross-view geo-localization: a survey [1.3686993145787065]
Cross-view geo-localization has garnered notable attention in the realm of computer vision, spurred by the widespread availability of copious geotagged datasets.
This paper provides a thorough survey of cutting-edge methodologies, techniques, and associated challenges that are integral to this domain.
arXiv Detail & Related papers (2024-06-14T05:14:54Z) - SymboSLAM: Semantic Map Generation in a Multi-Agent System [0.0]
Sub-symbolic artificial intelligence methods dominate the fields of environment-type classification and Simultaneous Localisation and Mapping.
This paper proposes a novel approach to environment-type classification through Symbolic Simultaneous Localisation and Mapping, SymboSLAM, to bridge the explainability gap.
arXiv Detail & Related papers (2024-03-22T00:48:52Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Active Neural Topological Mapping for Multi-Agent Exploration [24.91397816926568]
Multi-agent cooperative exploration problem requires multiple agents to explore an unseen environment via sensory signals in a limited time.
Topological maps are a promising alternative as they consist only of nodes and edges with abstract but essential information.
Deep reinforcement learning has shown great potential for learning (near) optimal policies through fast end-to-end inference.
We propose Multi-Agent Neural Topological Mapping (MANTM) to improve exploration efficiency and generalization for multi-agent exploration tasks.
arXiv Detail & Related papers (2023-11-01T03:06:14Z) - A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering [49.732628643634975]
The Segment Anything Model (SAM), developed by Meta AI Research, offers a robust framework for image and video segmentation.
This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding.
arXiv Detail & Related papers (2023-05-12T07:21:59Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Advances in Inference and Representation for Simultaneous Localization
and Mapping [8.721760004258352]
Simultaneous localization and mapping (SLAM) is a foundational capability for mobile robots, supporting such core functions as planning, navigation, and control.
This article reviews recent progress in SLAM, focusing on advances in the expressive capacity of the environmental models used in SLAM systems (representation) and the performance of the algorithms used to estimate these models from data (inference)
arXiv Detail & Related papers (2021-03-08T19:53:29Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
In this paper, we solve three low-level pixel-wise vision problems, including salient object segmentation, edge detection, and skeleton extraction.
We first show some similarities shared by these tasks and then demonstrate how they can be leveraged for developing a unified framework.
arXiv Detail & Related papers (2020-04-18T11:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.