Improving Domain Generalization on Gaze Estimation via Branch-out Auxiliary Regularization
- URL: http://arxiv.org/abs/2405.01439v1
- Date: Thu, 2 May 2024 16:26:37 GMT
- Title: Improving Domain Generalization on Gaze Estimation via Branch-out Auxiliary Regularization
- Authors: Ruijie Zhao, Pinyan Tang, Sihui Luo,
- Abstract summary: Branch-out Auxiliary Regularization (BAR) is designed to boost gaze estimation's generalization capabilities without requiring direct access to target domain data.
Bar integrates two auxiliary consistency regularization branches: one that uses augmented samples to counteract environmental variations, and another that aligns gaze directions with positive source domain samples to encourage the learning of consistent gaze features.
- Score: 3.3539987257923247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite remarkable advancements, mainstream gaze estimation techniques, particularly appearance-based methods, often suffer from performance degradation in uncontrolled environments due to variations in illumination and individual facial attributes. Existing domain adaptation strategies, limited by their need for target domain samples, may fall short in real-world applications. This letter introduces Branch-out Auxiliary Regularization (BAR), an innovative method designed to boost gaze estimation's generalization capabilities without requiring direct access to target domain data. Specifically, BAR integrates two auxiliary consistency regularization branches: one that uses augmented samples to counteract environmental variations, and another that aligns gaze directions with positive source domain samples to encourage the learning of consistent gaze features. These auxiliary pathways strengthen the core network and are integrated in a smooth, plug-and-play manner, facilitating easy adaptation to various other models. Comprehensive experimental evaluations on four cross-dataset tasks demonstrate the superiority of our approach.
Related papers
- CLIP-Gaze: Towards General Gaze Estimation via Visual-Linguistic Model [13.890404285565225]
We propose a novel framework called CLIP-Gaze that utilizes a pre-trained vision-language model to leverage its transferable knowledge.
Our framework is the first to leverage the vision-and-language cross-modality approach for gaze estimation task.
arXiv Detail & Related papers (2024-03-08T07:37:21Z) - Gradient Alignment for Cross-Domain Face Anti-Spoofing [26.517887637150594]
We introduce GAC-FAS, a novel learning objective that encourages the model to converge towards an optimal flat minimum.
Unlike conventional sharpness-aware minimizers, GAC-FAS identifies ascending points for each domain and regulates the generalization gradient updates.
We demonstrate the efficacy of GAC-FAS through rigorous testing on challenging cross-domain FAS datasets.
arXiv Detail & Related papers (2024-02-29T02:57:44Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
arXiv Detail & Related papers (2023-07-25T13:35:45Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Generalizing Interactive Backpropagating Refinement for Dense Prediction [0.0]
We introduce a set of G-BRS layers that enable both global and localized refinement for a range of dense prediction tasks.
Our method can successfully generalize and significantly improve performance of existing pretrained state-of-the-art models with only a few clicks.
arXiv Detail & Related papers (2021-12-21T03:52:08Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
In real-world applications, we might have only a few labels available from each source domain due to high annotation cost.
In this work, we investigate semi-supervised domain generalization, a more realistic and practical setting.
Our proposed approach, StyleMatch, is inspired by FixMatch, a state-of-the-art semi-supervised learning method based on pseudo-labeling.
arXiv Detail & Related papers (2021-06-01T16:00:08Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.