論文の概要: Deep Learning Descriptor Hybridization with Feature Reduction for Accurate Cervical Cancer Colposcopy Image Classification
- arxiv url: http://arxiv.org/abs/2405.01600v1
- Date: Wed, 1 May 2024 06:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 16:58:34.519250
- Title: Deep Learning Descriptor Hybridization with Feature Reduction for Accurate Cervical Cancer Colposcopy Image Classification
- Title(参考訳): 正確な頸部癌画像分類のためのDeep Learning Descriptor Hybridizationと特徴量削減
- Authors: Saurabh Saini, Kapil Ahuja, Siddartha Chennareddy, Karthik Boddupalli,
- Abstract要約: 本稿では,様々なディープラーニング記述子の強度と適切な特徴正規化を組み合わせたコンピュータ支援診断(CAD)システムを提案する。
本手法は,通常の分類と型分類の両方において,97%-100%の範囲での例外的な性能を実現する。
- 参考スコア(独自算出の注目度): 0.9374652839580183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cervical cancer stands as a predominant cause of female mortality, underscoring the need for regular screenings to enable early diagnosis and preemptive treatment of pre-cancerous conditions. The transformation zone in the cervix, where cellular differentiation occurs, plays a critical role in the detection of abnormalities. Colposcopy has emerged as a pivotal tool in cervical cancer prevention since it provides a meticulous examination of cervical abnormalities. However, challenges in visual evaluation necessitate the development of Computer Aided Diagnosis (CAD) systems. We propose a novel CAD system that combines the strengths of various deep-learning descriptors (ResNet50, ResNet101, and ResNet152) with appropriate feature normalization (min-max) as well as feature reduction technique (LDA). The combination of different descriptors ensures that all the features (low-level like edges and colour, high-level like shape and texture) are captured, feature normalization prevents biased learning, and feature reduction avoids overfitting. We do experiments on the IARC dataset provided by WHO. The dataset is initially segmented and balanced. Our approach achieves exceptional performance in the range of 97%-100% for both the normal-abnormal and the type classification. A competitive approach for type classification on the same dataset achieved 81%-91% performance.
- Abstract(参考訳): 頸部がんは女性死亡の主な原因であり、早期診断と先天的な疾患の予防治療を可能にするための定期的なスクリーニングの必要性を強調している。
細胞分化が起こる子宮頸部の形質転換帯は異常の検出において重要な役割を担っている。
大腸内視鏡検査は, 子宮頸癌予防の重要ツールとして注目されている。
しかし、視覚評価における課題は、コンピュータ支援診断(CAD)システムの開発を必要とする。
本稿では,様々なディープラーニング記述子(ResNet50,ResNet101,ResNet152)の長所と,適切な特徴正規化(min-max)と特徴低減技術(LDA)を組み合わせたCADシステムを提案する。
異なる記述子の組み合わせにより、すべての特徴(エッジやカラー、ハイレベルな形状やテクスチャ)がキャプチャされ、特徴正規化はバイアス学習を防ぎ、特徴の縮小は過度な適合を避ける。
WHOが提供したIARCデータセットについて実験を行った。
データセットは最初セグメンテーションされ、バランスを取る。
本手法は,通常の分類と型分類の両方において,97%-100%の範囲での例外的な性能を実現する。
同じデータセット上の型分類の競合的アプローチは81%-91%のパフォーマンスを達成した。
関連論文リスト
- Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images [0.9374652839580183]
本研究の目的は、血管拡張症、出血、潰瘍を含む10種類のGI異常分類の同定を自動化することである。
提案したモデルは、よく構造化されたデータセットで全体の94%の精度を達成する。
論文 参考訳(メタデータ) (2024-10-24T06:10:31Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Interpretable pap smear cell representation for cervical cancer
screening [3.8656297418166305]
変分オートエンコーダを用いた1クラス分類に基づいて, 乳頭スミア画像の深部頸部細胞表現を学習する手法を提案する。
我々のモデルは、深層モデルの付加的な訓練を必要とせずに、異常を識別することができる。
論文 参考訳(メタデータ) (2023-11-17T01:29:16Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - DeepCervix: A Deep Learning-based Framework for the Classification of
Cervical Cells Using Hybrid Deep Feature Fusion Techniques [14.208643185430219]
女性の中で最も多い致死性癌の1つである頸部がんは、早期に再発性病変を検出するために、定期的な検診によって予防することができる。
手動スクリーニングの実践を改善するため, 機械学習(ML)と深層学習(DL)を用いたコンピュータ支援診断(CAD)システムを用いて, 頚部乳頭細胞の分類を行った。
本研究は, dlに基づくハイブリッド型深部機能融合(hdff)技術を提案し, 頸椎細胞を正確に分類する。
論文 参考訳(メタデータ) (2021-02-24T10:34:51Z) - Feature based Sequential Classifier with Attention Mechanism [0.7123982871971924]
病理組織学的スライスを用いた骨盤内上皮内腫瘍評価は, 骨盤間変動が考慮される。
本稿では,高分解能上皮像を階層的に解析するネットワークパイプラインであるDeepCINを提案する。
実験により、DeepCINは病理学レベルのCIN分類精度を達成することが示された。
論文 参考訳(メタデータ) (2020-07-22T12:54:30Z) - Semi-Supervised Cervical Dysplasia Classification With Learnable Graph
Convolutional Network [25.685255609487623]
デジタル頸椎造影は一次検診や補助検診ツールとして大きな可能性を秘めている。
従来の完全教師付きトレーニングでは、大量の注釈付きデータが必要である。
本稿では,新しいグラフ畳み込みネットワーク(GCN)に基づく半教師付き分類モデルを提案する。
論文 参考訳(メタデータ) (2020-04-01T01:53:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。