Deep Learning for Wildfire Risk Prediction: Integrating Remote Sensing and Environmental Data
- URL: http://arxiv.org/abs/2405.01607v5
- Date: Mon, 16 Jun 2025 17:07:17 GMT
- Title: Deep Learning for Wildfire Risk Prediction: Integrating Remote Sensing and Environmental Data
- Authors: Zhengsen Xu, Jonathan Li, Sibo Cheng, Xue Rui, Yu Zhao, Hongjie He, Haiyan Guan, Aryan Sharma, Matthew Erxleben, Ryan Chang, Linlin Xu,
- Abstract summary: Wildfires pose a significant threat to ecosystems, wildlife, and human communities, leading to habitat destruction, pollutant emissions and loss.<n>This paper provides a comprehensive review of wildfire risk prediction methodologies, with a particular focus on deep learning approaches combined with remote sensing.
- Score: 17.29792900198235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildfires pose a significant threat to ecosystems, wildlife, and human communities, leading to habitat destruction, pollutant emissions, and biodiversity loss. Accurate wildfire risk prediction is crucial for mitigating these impacts and safeguarding both environmental and human health. This paper provides a comprehensive review of wildfire risk prediction methodologies, with a particular focus on deep learning approaches combined with remote sensing. We begin by defining wildfire risk and summarizing the geographical distribution of related studies. In terms of data, we analyze key predictive features, including fuel characteristics, meteorological and climatic conditions, socioeconomic factors, topography, and hydrology, while also reviewing publicly available wildfire prediction datasets derived from remote sensing. Additionally, we emphasize the importance of feature collinearity assessment and model interpretability to improve the understanding of prediction outcomes. Regarding methodology, we classify deep learning models into three primary categories: time-series forecasting, image segmentation, and spatiotemporal prediction, and further discuss methods for converting model outputs into risk classifications or probability-adjusted predictions. Finally, we identify the key challenges and limitations of current wildfire-risk prediction models and outline several research opportunities. These include integrating diverse remote sensing data, developing multimodal models, designing more computationally efficient architectures, and incorporating cross-disciplinary methods--such as coupling with numerical weather-prediction models--to enhance the accuracy and robustness of wildfire-risk assessments.
Related papers
- Advancing Wildfire Risk Prediction via Morphology-Aware Curriculum Contrastive Learning [2.8646703612162243]
Wildfires significantly impact natural ecosystems and human health, leading to biodiversity loss, increased hydrogeological risks, and elevated emissions of toxic substances.<n>Data show a bias toward an imbalanced setting, where the incidence of wildfire events is significantly lower than typical situations.<n>This paper investigates how adopting a contrastive framework can address these challenges through enhanced latent representations for the patch's dynamic features.
arXiv Detail & Related papers (2025-07-23T14:23:45Z) - Assessing wildfire susceptibility in Iran: Leveraging machine learning for geospatial analysis of climatic and anthropogenic factors [0.0]
This study analyzed the impact of climatic parameters, topographic features, and human-related factors on wildfire susceptibility assessment and prediction in Iran.<n>Results indicated that human-related factors, rather than climatic variables, had a more prominent influence during the seasonal analyses.
arXiv Detail & Related papers (2025-05-20T09:28:16Z) - Advancing Eurasia Fire Understanding Through Machine Learning Techniques [0.0]
We present one of the most extensive datasets available for wildfire analysis in Russia, covering 13 consecutive months of observations.<n>We conduct exploratory data analysis and develop predictive models to identify key fire behavior patterns across different fire categories and ecosystems.
arXiv Detail & Related papers (2025-02-24T10:22:17Z) - Advanced Wildfire Prediction in Morocco: Developing a Deep Learning Dataset from Multisource Observations [0.0]
This study introduces a novel and comprehensive dataset specifically designed for wildfire prediction in Morocco.
We compile essential environmental indicators such as vegetation health (NDVI), population density, soil moisture levels, and meteorological data.
Preliminary results show that models using this dataset achieve an accuracy of up to 90%, significantly improving prediction capabilities.
arXiv Detail & Related papers (2024-11-09T15:01:12Z) - HACSurv: A Hierarchical Copula-Based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
We introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures.<n>By capturing the dependencies between risks and censoring, HACSurv improves the accuracy of survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
We propose VegeDiff for the geospatial vegetation forecasting task.
VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes.
By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods.
arXiv Detail & Related papers (2024-07-17T14:15:52Z) - Explainable AI Integrated Feature Engineering for Wildfire Prediction [1.7934287771173114]
We conducted a thorough assessment of various machine learning algorithms for both classification and regression tasks relevant to predicting wildfires.
For classifying different types or stages of wildfires, the XGBoost model outperformed others in terms of accuracy and robustness.
The Random Forest regression model showed superior results in predicting the extent of wildfire-affected areas.
arXiv Detail & Related papers (2024-04-01T21:12:44Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Robust detection and attribution of climate change under interventions [4.344839102717429]
Fingerprints are key tools in climate change detection and attribution (D&A)
We propose a direct D&A approach based on supervised learning to extract fingerprints that lead to robust predictions.
Our study shows that incorporating robustness constraints against relevant interventions may significantly benefit detection and attribution of climate change.
arXiv Detail & Related papers (2022-12-09T15:13:40Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process.
The aim of this study is to investigate the feasibility of several machines learning (ML) models for modeling the monthly pan evaporation estimation.
arXiv Detail & Related papers (2021-10-10T10:06:16Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.