論文の概要: Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization
- arxiv url: http://arxiv.org/abs/2405.01731v1
- Date: Thu, 2 May 2024 21:04:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:24:53.209072
- Title: Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization
- Title(参考訳): 雑音微分自由最適化のための動的異方性平滑化
- Authors: Sam Reifenstein, Timothee Leleu, Yoshihisa Yamamoto,
- Abstract要約: 雑音のない微分自由最適化のための球平滑化法とガウス平滑化法を拡張した新しいアルゴリズムを提案する。
アルゴリズムはスムーズなカーネルの形状を動的に適応させ、局所最適関数の Hessian を近似する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization by accounting for the heterogeneous curvature of the objective function. The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum. This approach significantly reduces the error in estimating the gradient from noisy evaluations through sampling. We demonstrate the efficacy of our method through numerical experiments on artificial problems. Additionally, we show improved performance when tuning NP-hard combinatorial optimization solvers compared to existing state-of-the-art heuristic derivative-free and Bayesian optimization methods.
- Abstract(参考訳): 目的関数の不均一曲率を考慮に入れ, 雑音のない微分自由最適化のための球平滑化法とガウス平滑化法を拡張した新しいアルゴリズムを提案する。
アルゴリズムはスムーズなカーネルの形状を動的に適応させ、局所最適関数の Hessian を近似する。
このアプローチは,サンプリングによる雑音評価から勾配を推定する際の誤差を著しく低減する。
人工的な問題に対する数値実験により,本手法の有効性を実証する。
さらに、既存の最先端のヒューリスティックなデリバティブフリーおよびベイズ最適化手法と比較して、NPハード組合せ最適化器のチューニング性能が向上した。
関連論文リスト
- Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Using Stochastic Gradient Descent to Smooth Nonconvex Functions: Analysis of Implicit Graduated Optimization [0.6906005491572401]
バッチ降下勾配 (SGD) における雑音は, 目的関数の平滑化の効果を示す。
我々は,学習率とバッチサイズによってスムース化の度合いが変化する新しい累積最適化アルゴリズムを解析する。
論文 参考訳(メタデータ) (2023-11-15T07:27:40Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
勾配情報のない制約のない最適化問題を考察する。
適応的なサンプリング準ニュートン法を提案し、共通乱数フレームワーク内の有限差を用いてシミュレーション関数の勾配を推定する。
そこで本研究では, 標準試験と内積準ニュートン試験の修正版を開発し, 近似に使用する試料サイズを制御し, 最適解の近傍に大域収束結果を与える。
論文 参考訳(メタデータ) (2021-09-24T21:49:25Z) - A Closed Loop Gradient Descent Algorithm applied to Rosenbrock's
function [0.0]
本稿では,非拘束慣性減衰の勾配降下アルゴリズムとして応用できる勾配系の新しい適応手法を提案する。
また、リアプノフ安定性解析を用いて、連続数値時間バージョンの性能を実証する。
論文 参考訳(メタデータ) (2021-08-29T17:25:24Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。