論文の概要: Neural Context Flows for Learning Generalizable Dynamical Systems
- arxiv url: http://arxiv.org/abs/2405.02154v1
- Date: Fri, 3 May 2024 15:02:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:36:11.020128
- Title: Neural Context Flows for Learning Generalizable Dynamical Systems
- Title(参考訳): 一般化可能な力学系学習のためのニューラルコンテキストフロー
- Authors: Roussel Desmond Nzoyem, David A. W. Barton, Tom Deakin,
- Abstract要約: 本研究では,非観測パラメータを潜在コンテキストベクトルにエンコードするフレームワークであるNeural Context Flow(NCF)をベクトル場への入力として導入する。
NCFは、パラメータに関するベクトル場の微分可能性と、任意の文脈ベクトルが他のパラメータからのトラジェクトリに影響を与えることを可能にする一階テイラー展開を利用する。
本研究は、条件付きニューラル・オードの恩恵を受ける科学および関連分野におけるモデルに実践的な意味を持つ。
- 参考スコア(独自算出の注目度): 0.7373617024876724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Ordinary Differential Equations typically struggle to generalize to new dynamical behaviors created by parameter changes in the underlying system, even when the dynamics are close to previously seen behaviors. The issue gets worse when the changing parameters are unobserved, i.e., their value or influence is not directly measurable when collecting data. We introduce Neural Context Flow (NCF), a framework that encodes said unobserved parameters in a latent context vector as input to a vector field. NCFs leverage differentiability of the vector field with respect to the parameters, along with first-order Taylor expansion to allow any context vector to influence trajectories from other parameters. We validate our method and compare it to established Multi-Task and Meta-Learning alternatives, showing competitive performance in mean squared error for in-domain and out-of-distribution evaluation on the Lotka-Volterra, Glycolytic Oscillator, and Gray-Scott problems. This study holds practical implications for foundational models in science and related areas that benefit from conditional neural ODEs. Our code is openly available at https://github.com/ddrous/ncflow.
- Abstract(参考訳): ニューラル常微分方程式は、たとえ力学が以前見られた挙動に近い場合でも、基盤システムのパラメータ変化によって生成される新しい力学挙動を一般化するのに苦労する。
パラメータの変化が観測されない場合、すなわちデータ収集の際の値や影響を直接測定できない場合、問題は悪化する。
このフレームワークは,非観測パラメータを潜在コンテキストベクトルに符号化し,ベクトル場への入力として利用する。
NCFは、パラメータに関するベクトル場の微分可能性と、任意の文脈ベクトルが他のパラメータからのトラジェクトリに影響を与えることを可能にする一階テイラー展開を利用する。
提案手法の有効性を検証し,マルチタスクとメタラーニングの代替案と比較し,ドメイン内平均二乗誤差における競合性能と,ロトカ・ボルテラ,グリコリシスオシレータ,グレイ・スコット問題に対する分布外評価を示す。
本研究は, 条件付きニューラル・オードの恩恵を受ける科学および関連分野の基礎モデルに対して, 実践的な意味を持つ。
私たちのコードはhttps://github.com/ddrous/ncflow.comで公開されています。
関連論文リスト
- Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
本稿では,ビデオフレームなどの観測結果に基づいて,時間・動的システムの状態変化をモデル化し,推定することの課題に対処する。
本稿では、一般的な物理プロセスの法則をデータ駆動方式で捉えるために、ユニバーサルエキスパートモジュール、すなわち光フロー推定コンポーネントを提案する。
我々は、既存のSOTAベースラインと比較して、提案フレームワークが大きなパフォーマンスマージンを達成することを示すため、広範囲な実験と改善を実施している。
論文 参考訳(メタデータ) (2024-02-06T06:27:07Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
共役および非共役のトレーニングダイナミクスを識別するフレームワークを開発する。
クープマン作用素理論の進歩を利用して、クープマン固有値を比較することで、オンラインミラー降下とオンライン勾配降下の既知同値を正しく同定できることを実証する。
a)浅層ニューラルネットワークと広層ニューラルネットワークの間の非共役トレーニングダイナミクスの同定、(b)畳み込みニューラルネットワークにおけるトレーニングダイナミクスの初期段階の特徴付け、(c)グルーキングを行わないトランスフォーマーにおける非共役トレーニングダイナミクスの発見。
論文 参考訳(メタデータ) (2023-02-17T22:15:20Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
Neural ODE Processモデルを拡張して、Learning Using Privileged Information設定内の追加情報を使用します。
シミュレーション動的タスクの精度とキャリブレーションを向上した実験により拡張性を検証する。
論文 参考訳(メタデータ) (2021-04-29T12:18:02Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Go with the Flow: Adaptive Control for Neural ODEs [10.265713480189484]
ニューラル制御ODE(N-CODE)と呼ばれる新しいモジュールについて述べる。
N-CODEモジュールは、初期または現在のアクティベーション状態からトレーニング可能なマップによって制御される動的変数である。
単一モジュールは、適応的に神経表現を駆動する非自律フロー上の分布を学ぶのに十分である。
論文 参考訳(メタデータ) (2020-06-16T22:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。