論文の概要: Neural Context Flows for Learning Generalizable Dynamical Systems
- arxiv url: http://arxiv.org/abs/2405.02154v2
- Date: Mon, 8 Jul 2024 18:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:21:23.726756
- Title: Neural Context Flows for Learning Generalizable Dynamical Systems
- Title(参考訳): 一般化可能な力学系学習のためのニューラルコンテキストフロー
- Authors: Roussel Desmond Nzoyem, David A. W. Barton, Tom Deakin,
- Abstract要約: 本研究では,非観測パラメータを潜在コンテキストベクトルにエンコードするフレームワークであるNeural Context Flow(NCF)をベクトル場への入力として導入する。
NCFは、パラメータに関するベクトル場の微分可能性と、任意の文脈ベクトルが他のパラメータからのトラジェクトリに影響を与えることを可能にする一階テイラー展開を利用する。
本研究は、条件付きニューラル・オードの恩恵を受ける科学および関連分野におけるモデルに実践的な意味を持つ。
- 参考スコア(独自算出の注目度): 0.7373617024876724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Ordinary Differential Equations typically struggle to generalize to new dynamical behaviors created by parameter changes in the underlying system, even when the dynamics are close to previously seen behaviors. The issue gets worse when the changing parameters are unobserved, i.e., their value or influence is not directly measurable when collecting data. We introduce Neural Context Flow (NCF), a framework that encodes said unobserved parameters in a latent context vector as input to a vector field. NCFs leverage differentiability of the vector field with respect to the parameters, along with first-order Taylor expansion to allow any context vector to influence trajectories from other parameters. We validate our method and compare it to established Multi-Task and Meta-Learning alternatives, showing competitive performance in mean squared error for in-domain and out-of-distribution evaluation on the Lotka-Volterra, Glycolytic Oscillator, and Gray-Scott problems. This study holds practical implications for foundational models in science and related areas that benefit from conditional neural ODEs. Our code is openly available at https://github.com/ddrous/ncflow.
- Abstract(参考訳): ニューラル常微分方程式は、たとえ力学が以前見られた挙動に近い場合でも、基盤システムのパラメータ変化によって生成される新しい力学挙動を一般化するのに苦労する。
パラメータの変化が観測されない場合、すなわちデータ収集の際の値や影響を直接測定できない場合、問題は悪化する。
このフレームワークは,非観測パラメータを潜在コンテキストベクトルに符号化し,ベクトル場への入力として利用する。
NCFは、パラメータに関するベクトル場の微分可能性と、任意の文脈ベクトルが他のパラメータからのトラジェクトリに影響を与えることを可能にする一階テイラー展開を利用する。
提案手法の有効性を検証し,マルチタスクとメタラーニングの代替案と比較し,ドメイン内平均二乗誤差における競合性能と,ロトカ・ボルテラ,グリコリシスオシレータ,グレイ・スコット問題に対する分布外評価を示す。
本研究は, 条件付きニューラル・オードの恩恵を受ける科学および関連分野の基礎モデルに対して, 実践的な意味を持つ。
私たちのコードはhttps://github.com/ddrous/ncflow.comで公開されています。
関連論文リスト
- Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
ディープニューラルネットワークは、日々の生活の多くの領域に適用されている。
これらは、空間的に変換された入力信号に頑健に対処するなど、依然として必須の能力が欠如している。
本稿では,ニューラルネットの推論過程をエミュレートする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:47:29Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Transformer Neural Autoregressive Flows [48.68932811531102]
正規化フロー(NF)を用いて密度推定を行う。
我々はトランスフォーマーニューラルオートレグレッシブフロー(T-NAF)と呼ばれる新しいタイプのニューラルフローを定義するためにトランスフォーマーを利用する新しい解を提案する。
論文 参考訳(メタデータ) (2024-01-03T17:51:16Z) - On the Initialization of Graph Neural Networks [10.153841274798829]
グラフニューラルネットワーク層間の前方・後方伝播のばらつきを解析する。
GNN最適化(Virgo)における可変不安定化のための新しい手法を提案する。
15のデータセットで包括的な実験を行い、Virgoが優れたモデルパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-05T09:55:49Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
テンソル分解は マルチウェイデータ解析の 重要なツールです
動的EMbedIngs fOr Dynamic Algorithm dEcomposition (DEMOTE)を提案する。
シミュレーション研究と実世界の応用の両方において,本手法の利点を示す。
論文 参考訳(メタデータ) (2023-10-30T15:49:45Z) - Resolution-Invariant Image Classification based on Fourier Neural
Operators [1.3190581566723918]
画像分類における一般化ニューラルネットワーク (FNO) の利用について, 標準畳み込みニューラルネットワーク (CNN) と比較して検討した。
我々は、ルベーグ空間上の連続およびFr'echet微分可能なニューラル作用素の例としてFNOアーキテクチャを導出する。
論文 参考訳(メタデータ) (2023-04-02T10:23:36Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
一般化ゼロショット学習(英: Generalized Zero-Shot Learning、GZSL)は、学習中に見知らぬクラスが観察できない、見つからないサンプルを認識するために意味情報(属性など)を活用するタスクである。
本稿では,未知のデータ合成を効率よく,効率的に学習するための新しい生成シフト緩和フローフレームワークを提案する。
実験結果から,GSMFlowは従来のゼロショット設定と一般化されたゼロショット設定の両方において,最先端の認識性能を実現することが示された。
論文 参考訳(メタデータ) (2021-07-07T11:43:59Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Go with the Flow: Adaptive Control for Neural ODEs [10.265713480189484]
ニューラル制御ODE(N-CODE)と呼ばれる新しいモジュールについて述べる。
N-CODEモジュールは、初期または現在のアクティベーション状態からトレーニング可能なマップによって制御される動的変数である。
単一モジュールは、適応的に神経表現を駆動する非自律フロー上の分布を学ぶのに十分である。
論文 参考訳(メタデータ) (2020-06-16T22:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。