How to Diversify any Personalized Recommender?
- URL: http://arxiv.org/abs/2405.02156v2
- Date: Tue, 04 Feb 2025 10:49:20 GMT
- Title: How to Diversify any Personalized Recommender?
- Authors: Manel Slokom, Savvina Danil, Laura Hollink,
- Abstract summary: We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining accuracy.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
Using pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data.
- Score: 0.0
- License:
- Abstract: In this paper, we introduce a novel approach to improve the diversity of Top-N recommendations while maintaining accuracy. Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics. We personalize this strategy by selectively adding and removing a percentage of interactions from user profiles. This personalization ensures we remain closely aligned with user preferences while gradually introducing distribution shifts. Our pre-processing technique offers flexibility and can seamlessly integrate into any recommender architecture. We run extensive experiments on two publicly available data sets for news and book recommendations to evaluate our approach. We test various standard and neural network-based recommender system algorithms. Our results show that our approach generates diverse recommendations, ensuring users are exposed to a wider range of items. Furthermore, using pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data. Additionally, our approach promotes provider fairness by facilitating exposure to minority categories. Our GitHub code is available at: https://github.com/SlokomManel/How-to-Diversify-any-Personalized-Recommender-
Related papers
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Preference Discerning with LLM-Enhanced Generative Retrieval [28.309905847867178]
We propose a new paradigm, which we term preference discerning.
In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context.
We generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data.
arXiv Detail & Related papers (2024-12-11T18:26:55Z) - Context-aware adaptive personalised recommendation: a meta-hybrid [0.41436032949434404]
We propose a meta-hybrid recommender that uses machine learning to predict an optimal algorithm.
Based on the proposed model, it is possible to predict which recommender will provide the most precise recommendations to a user.
arXiv Detail & Related papers (2024-10-17T09:24:40Z) - Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
We propose a novel recommendation strategy that combines relevance and diversity by a copula function.
We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system.
Our strategy outperforms several state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-07T13:48:24Z) - Personalized Multi-task Training for Recommender System [80.23030752707916]
PMTRec is the first personalized multi-task learning algorithm to obtain comprehensive user/item embeddings from various information sources.
Our contributions open new avenues for advancing personalized multi-task training in recommender systems.
arXiv Detail & Related papers (2024-07-31T06:27:06Z) - Improving Recommendation System Serendipity Through Lexicase Selection [53.57498970940369]
We propose a new serendipity metric to measure the presence of echo chambers and homophily in recommendation systems.
We then attempt to improve the diversity-preservation qualities of well known recommendation techniques by adopting a parent selection algorithm known as lexicase selection.
Our results show that lexicase selection, or a mixture of lexicase selection and ranking, outperforms its purely ranked counterparts in terms of personalization, coverage and our specifically designed serendipity benchmark.
arXiv Detail & Related papers (2023-05-18T15:37:38Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Introducing a Framework and a Decision Protocol to Calibrate Recommender
Systems [0.0]
This paper proposes an approach to create recommendation lists with a calibrated balance of genres.
The main claim is that calibration can contribute positively to generate fairer recommendations.
We propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems.
arXiv Detail & Related papers (2022-04-07T19:30:55Z) - Random Walks with Erasure: Diversifying Personalized Recommendations on
Social and Information Networks [4.007832851105161]
We develop a novel recommendation framework with a goal of improving information diversity using a modified random walk exploration of the user-item graph.
For recommending political content on social networks, we first propose a new model to estimate the ideological positions for both users and the content they share.
Based on these estimated positions, we generate diversified personalized recommendations using our new random-walk based recommendation algorithm.
arXiv Detail & Related papers (2021-02-18T21:53:32Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
arXiv Detail & Related papers (2020-07-07T17:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.