Performance Analysis of an Optimization Algorithm for Metamaterial Design on the Integrated High-Performance Computing and Quantum Systems
- URL: http://arxiv.org/abs/2405.02211v1
- Date: Fri, 3 May 2024 16:12:02 GMT
- Title: Performance Analysis of an Optimization Algorithm for Metamaterial Design on the Integrated High-Performance Computing and Quantum Systems
- Authors: Seongmin Kim, In-Saeng Suh,
- Abstract summary: We comprehensively analyze the performance of an optimization algorithm for metamaterial design on the integrated HPC and quantum systems.
We demonstrate significant time advantages through message-passing interface (MPI) parallelization.
Results showcase 24 times speedup when executing the optimization algorithm on the HPC-quantum hybrid system.
- Score: 0.25782420501870296
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optimizing metamaterials with complex geometries is a big challenge. Although an active learning algorithm, combining machine learning (ML), quantum computing, and optical simulation, has emerged as an efficient optimization tool, it still faces difficulties in optimizing complex structures that have potentially high performance. In this work, we comprehensively analyze the performance of an optimization algorithm for metamaterial design on the integrated HPC and quantum systems. We demonstrate significant time advantages through message-passing interface (MPI) parallelization on the high-performance computing (HPC) system showing approximately 54% faster ML tasks and 67 times faster optical simulation against serial workloads. Furthermore, we analyze the performance of a quantum algorithm designed for optimization, which runs with various quantum simulators on a local computer or HPC-quantum system. Results showcase ~24 times speedup when executing the optimization algorithm on the HPC-quantum hybrid system. This study paves a way to optimize complex metamaterials using the integrated HPC-quantum system.
Related papers
- Distributed Quantum Approximate Optimization Algorithm on Integrated High-Performance Computing and Quantum Computing Systems for Large-Scale Optimization [1.7099366779394252]
Quantum approximated optimization algorithm (QAOA) has shown promise for solving optimization problems by providing quantum speedup on gate-based quantum computing systems.
We propose a distributed QAOA (DQAOA), which leverages a high-performance computing-quantum computing integrated system.
We successfully optimize photonic structures using AL-DQAOA, indicating that solving real-world optimization problems using gate-based quantum computing is feasible with our strategies.
arXiv Detail & Related papers (2024-07-29T17:42:25Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
Quantum approximate optimization algorithm (QAOA) is one of the popular quantum algorithms that are used to solve optimization problems via approximations.
However, performing QAOA on virtual quantum computers suffers from a slow simulation speed for solving optimization problems.
We propose techniques to accelerate QCS for QAOA using mathematical optimizations to compress quantum operations.
arXiv Detail & Related papers (2023-12-05T06:08:57Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Optimization of chemical mixers design via tensor trains and quantum
computing [0.0]
We demonstrate a novel optimization method, train optimization (TetraOpt), for the shape optimization of components focusing on a Y-shaped mixer of fluids.
Due to its high parallelization and more extensive global search, TetraOpt outperforms commonly used Bayesian optimization techniques in accuracy and runtime.
We discuss the extension of this approach to quantum computing, which potentially yields a more efficient approach.
arXiv Detail & Related papers (2023-04-24T17:56:56Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Quantum-Enhanced Simulation-Based Optimization [0.8057006406834467]
Simulation-based optimization seeks to optimize an objective function that is computationally expensive to evaluate exactly.
Quantum Amplitude Estimation (QAE) can achieve a quadratic speed-up over classical Monte Carlo simulation.
arXiv Detail & Related papers (2020-05-21T17:02:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.