論文の概要: DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands
- arxiv url: http://arxiv.org/abs/2405.02499v1
- Date: Fri, 3 May 2024 22:10:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:40:24.033138
- Title: DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands
- Title(参考訳): DRAMScope: メモリコマンドによるDRAMマイクロアーキテクチャと特性の発見
- Authors: Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin Kim, Jaehyun Park, Chihun Song, Nam Sung Kim, Jung Ho Ahn,
- Abstract要約: 本稿では,コモディティDRAMチップの微細構造とその動作誘起ビットフリップ(AIB)特性への影響について述べる。
正確で効率的なリバースエンジニアリングのために、AIB、保持時間テスト、そしてクロスバリデーション可能なRowCopyという3つのツールを使用します。
これまでに知られていなかったAIBの脆弱性を特定し、シンプルで効果的な保護ソリューションを提案する。
- 参考スコア(独自算出の注目度): 6.863346979406863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.
- Abstract(参考訳): DRAMマイクロアーキテクチャの正確な情報とエラー特性の要求は急増しており、メモリの処理を探索し、信頼性を高め、セキュリティ上の脆弱性を軽減する必要がある。
しかしながら、DRAMメーカーは限られた情報しか公開していないため、DRAMマイクロアーキテクチャに関する特定の情報を見つけることは困難である。
本稿では,コモディティDRAMチップの微細構造と,RowHammerやRowPressといったアクティベーション誘起ビットフリップ(AIB)の特性に対する影響について,より厳密な知見を提示することによって,このギャップに対処する。
これまでの研究では、DRAMのマイクロアーキテクチャと関連する振る舞いの理解も試みてきたが、その成果のいくつかは、不正確なアドレスマッピングと内部データスワズル、あるいは現代のDRAM細胞構造に関する深い理解の欠如によって誤解されていることが判明した。
正確で効率的なリバースエンジニアリングには、AIB、保持時間テスト、RowCopyという3つのツールを使用します。
これら3つのツールを用いて、我々はまず最新のDRAMチップのマクロビューを用いて、サブアレイ、メモリアレイタイル(MAT)、行のサイズ、構造、操作を明らかにする。
次に、6F^2セルレイアウトなどのDRAMマイクロアーキテクチャの顕微鏡的ビューに基づいてAIB特性を分析し、AIBに関する誤解を是正し、AIBを加速する新しいデータパターンを発見する。
最後に,これまで知られていなかったAIBの脆弱性を同定し,単純で効果的な保護法を提案する。
関連論文リスト
- Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights into Modern DRAM Chips [0.0]
ストレージ密度は、システムレベルの攻撃によって悪用される回路レベルの脆弱性であるDRAM読み取り障害を悪化させる。
既存の防御は効果がないか、違法に高価である。
1)DRAMベースのシステムの保護は、技術スケーリングが読み取り障害の脆弱性を増大させるにつれてコストが高くなり、2)既存のソリューションの多くはDRAM内部の独自知識に依存している。
論文 参考訳(メタデータ) (2024-08-27T13:12:03Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions [6.731882555515892]
本報告では,読み出し障害の空間的変動の厳密な実DRAMチップ特性について述べる。
Sv"ardは、行レベルの読み取り障害プロファイルに基づいて、既存のソリューションの攻撃性を動的に適応する新しいメカニズムである。
論文 参考訳(メタデータ) (2024-02-28T19:00:55Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
本稿では,メモリリプレイ技術を用いて,メモリ爆発問題に対処する枠組みを提案する。
Topology-aware Embedding Memory (TEM) を用いたPDGNNは最先端技術よりも優れている。
論文 参考訳(メタデータ) (2024-01-24T03:03:17Z) - Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips [6.501197729222095]
高帯域メモリ(HBM)における読み出し障害(RowHammer,RowPress)の効果を実験的に実証し,未文書読み出し障害防御機構の内部動作を明らかにする。
2つのFPGAボードで6つのReal2 DRAMチップの詳細な特徴は、読み取り障害の脆弱性が2つの異なるチップ間で著しく異なることを示している。
我々は,より強力な読解障害攻撃とより効率的な防御機構を開発するために,我々の研究成果をどのように活用できるかを述べる。
論文 参考訳(メタデータ) (2023-10-23T08:01:48Z) - Analysis of the Memorization and Generalization Capabilities of AI
Agents: Are Continual Learners Robust? [91.682459306359]
連続学習(CL)では、AIエージェントが動的環境下で非定常データストリームから学習する。
本稿では,過去の知識を維持しつつ,動的環境への堅牢な一般化を実現するための新しいCLフレームワークを提案する。
提案フレームワークの一般化と記憶性能を理論的に解析した。
論文 参考訳(メタデータ) (2023-09-18T21:00:01Z) - ALARM: Active LeArning of Rowhammer Mitigations [0.0]
Rowhammerは、現代の動的ランダムアクセスメモリ(DRAM)の深刻なセキュリティ問題である
本稿では,現代のDRAMの合成モデルに対して,Rowhammer緩和パラメータを自動的に推論する能動的学習に基づくツールを提案する。
論文 参考訳(メタデータ) (2022-11-30T12:24:35Z) - Self-Managing DRAM: A Low-Cost Framework for Enabling Autonomous and Efficient in-DRAM Operations [7.663876942368506]
本稿では,自律的なDRAM保守操作を可能にする,低コストなDRAMアーキテクチャであるSelf-Managing DRAM(SMD)を提案する。
SMDは、メモリコントローラからチップへのメンテナンス操作を制御する責任を負う。
DDRxインタフェースに新しいピンを追加することなく、低レイテンシで実装可能であることを示す。
論文 参考訳(メタデータ) (2022-07-27T08:27:10Z) - Working Memory Connections for LSTM [51.742526187978726]
ワーキングメモリ接続は,様々なタスクにおけるLSTMの性能を常に向上することを示す。
数値的な結果は、細胞状態がゲート構造に含まれる価値のある情報を含んでいることを示唆している。
論文 参考訳(メタデータ) (2021-08-31T18:01:30Z) - ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and
Gradient Accumulation [106.04777600352743]
微分可能なアーキテクチャサーチ(DARTS)は、スーパーネット全体がメモリに格納されているため、メモリコストが大幅に低下する。
シングルパスのDARTSが登場し、各ステップでシングルパスのサブモデルのみを選択する。
メモリフレンドリーだが、計算コストも低い。
RObustifying Memory-Efficient NAS (ROME) と呼ばれる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-23T06:34:07Z) - Towards Automated Neural Interaction Discovery for Click-Through Rate
Prediction [64.03526633651218]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最も重要な機械学習タスクの1つである。
本稿では,AutoCTR と呼ばれる CTR 予測のための自動インタラクションアーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T04:33:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。