論文の概要: Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions
- arxiv url: http://arxiv.org/abs/2402.18652v1
- Date: Wed, 28 Feb 2024 19:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:49:31.429246
- Title: Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions
- Title(参考訳): 空間変動を考慮した読み取り外乱防御:実DRAMチップの実験的解析と今後の課題
- Authors: Abdullah Giray Yağlıkçı, Yahya Can Tuğrul, Geraldo F. Oliveira, İsmail Emir Yüksel, Ataberk Olgun, Haocong Luo, Onur Mutlu,
- Abstract要約: 本報告では,読み出し障害の空間的変動の厳密な実DRAMチップ特性について述べる。
Sv"ardは、行レベルの読み取り障害プロファイルに基づいて、既存のソリューションの攻撃性を動的に適応する新しいメカニズムである。
- 参考スコア(独自算出の注目度): 6.731882555515892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Read disturbance in modern DRAM chips is a widespread phenomenon and is reliably used for breaking memory isolation, a fundamental building block for building robust systems. RowHammer and RowPress are two examples of read disturbance in DRAM where repeatedly accessing (hammering) or keeping active (pressing) a memory location induces bitflips in other memory locations. Unfortunately, shrinking technology node size exacerbates read disturbance in DRAM chips over generations. As a result, existing defense mechanisms suffer from significant performance and energy overheads, limited effectiveness, or prohibitively high hardware complexity. In this paper, we tackle these shortcomings by leveraging the spatial variation in read disturbance across different memory locations in real DRAM chips. To do so, we 1) present the first rigorous real DRAM chip characterization study of spatial variation of read disturbance and 2) propose Sv\"ard, a new mechanism that dynamically adapts the aggressiveness of existing solutions based on the row-level read disturbance profile. Our experimental characterization on 144 real DDR4 DRAM chips representing 10 chip designs demonstrates a large variation in read disturbance vulnerability across different memory locations: in the part of memory with the worst read disturbance vulnerability, 1) up to 2x the number of bitflips can occur and 2) bitflips can occur at an order of magnitude fewer accesses, compared to the memory locations with the least vulnerability to read disturbance. Sv\"ard leverages this variation to reduce the overheads of five state-of-the-art read disturbance solutions, and thus significantly increases system performance.
- Abstract(参考訳): 現代のDRAMチップにおける読み取り障害は広範な現象であり、堅牢なシステムを構築するための基本的なビルディングブロックであるメモリアイソレーションの破壊に確実に使用される。
RowHammerとRowPressはDRAMにおける読み取り障害の2つの例である。
残念ながら、ノードサイズを縮小する技術は、世代を重ねてDRAMチップの読み出し障害を悪化させる。
その結果、既存の防御機構は、性能とエネルギーのオーバーヘッド、限られた有効性、あるいは極めて高いハードウェアの複雑さに悩まされている。
本稿では、実際のDRAMチップにおいて、異なるメモリ位置における読み出し障害の空間的変動を利用して、これらの欠点に対処する。
そうするために、私たちは
1)読み出し障害と読み出し障害の空間的変動に関する第1回厳密な実DRAMチップ特性の検討
Sv\"ardは、行レベルの読み取り障害プロファイルに基づいて、既存のソリューションの攻撃性を動的に適応する新しいメカニズムである。
10チップ設計を表す144個の実DDR4 DRAMチップを実験的に評価したところ、メモリの異なる場所で読み出し障害の脆弱性が大きく変動していることが判明した。
1) 最大2倍まで、ビットフリップの数が発生しうる。
2) ビットフリップは、読み出し障害の最小限の脆弱性を持つメモリロケーションと比較して、桁違いに少ないアクセスで発生する可能性がある。
Sv\"ardはこの変化を利用して、5つの最先端の読み取り障害ソリューションのオーバーヘッドを減らし、システム性能を大幅に向上させる。
関連論文リスト
- Preventing Rowhammer Exploits via Low-Cost Domain-Aware Memory Allocation [46.268703252557316]
Rowhammerは、最新のDRAMベースのメモリを持つすべてのシステムの中心にあるハードウェアセキュリティの脆弱性である。
C Citadelは、Rowhammerの初期セキュリティエクスプロイトを防ぐ新しいメモリアロケータ設計である。
C Citadelは数千のセキュリティドメインを、平均7.4%のメモリオーバーヘッドでサポートし、パフォーマンスを損なわない。
論文 参考訳(メタデータ) (2024-09-23T18:41:14Z) - Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights into Modern DRAM Chips [0.0]
ストレージ密度は、システムレベルの攻撃によって悪用される回路レベルの脆弱性であるDRAM読み取り障害を悪化させる。
既存の防御は効果がないか、違法に高価である。
1)DRAMベースのシステムの保護は、技術スケーリングが読み取り障害の脆弱性を増大させるにつれてコストが高くなり、2)既存のソリューションの多くはDRAM内部の独自知識に依存している。
論文 参考訳(メタデータ) (2024-08-27T13:12:03Z) - DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands [6.863346979406863]
本稿では,コモディティDRAMチップの微細構造とその動作誘起ビットフリップ(AIB)特性への影響について述べる。
正確で効率的なリバースエンジニアリングのために、AIB、保持時間テスト、そしてクロスバリデーション可能なRowCopyという3つのツールを使用します。
これまでに知られていなかったAIBの脆弱性を特定し、シンプルで効果的な保護ソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-03T22:10:21Z) - AI and Memory Wall [81.06494558184049]
メモリ帯域幅がデコーダモデルの主要なボトルネックとなることを示す。
私たちは、このメモリ制限を克服するためのモデルアーキテクチャ、トレーニング、デプロイメント戦略の再設計を主張します。
論文 参考訳(メタデータ) (2024-03-21T04:31:59Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - LLM in a flash: Efficient Large Language Model Inference with Limited Memory [19.668719251238176]
大規模言語モデル(LLM)は現代の自然言語処理の中心であり、様々なタスクにおいて例外的なパフォーマンスを提供する。
本稿では,利用可能なDRAM容量を超えるLLMを効率的に動作させるという課題に対処する。
本手法は,フラッシュメモリの特性を考慮した推論コストモデルの構築を含む。
論文 参考訳(メタデータ) (2023-12-12T18:57:08Z) - Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips [6.501197729222095]
高帯域メモリ(HBM)における読み出し障害(RowHammer,RowPress)の効果を実験的に実証し,未文書読み出し障害防御機構の内部動作を明らかにする。
2つのFPGAボードで6つのReal2 DRAMチップの詳細な特徴は、読み取り障害の脆弱性が2つの異なるチップ間で著しく異なることを示している。
我々は,より強力な読解障害攻撃とより効率的な防御機構を開発するために,我々の研究成果をどのように活用できるかを述べる。
論文 参考訳(メタデータ) (2023-10-23T08:01:48Z) - RowPress: Amplifying Read Disturbance in Modern DRAM Chips [7.046976177695823]
RowPressは、DRAM行を長時間開いておくことで、メモリアイソレーションを壊します。
極端な場合、RowPressは隣接する行が一度だけアクティベートされたときにDRAM行のビットフリップを誘導する。
164個の実DDR4 DRAMチップの詳細な特徴は、RowPressが3大DRAMメーカーのすべてのチップに影響を与えることを示している。
論文 参考訳(メタデータ) (2023-06-29T16:09:56Z) - Recurrent Dynamic Embedding for Video Object Segmentation [54.52527157232795]
一定サイズのメモリバンクを構築するためにRDE(Recurrent Dynamic Embedding)を提案する。
本稿では, SAM を長時間の動画でより堅牢にするため, トレーニング段階での無バイアス誘導損失を提案する。
また、メモリバンクの異なる品質のマスクの埋め込みをネットワークが修復できるように、新たな自己補正戦略を設計する。
論文 参考訳(メタデータ) (2022-05-08T02:24:43Z) - Neural Network Compression for Noisy Storage Devices [71.4102472611862]
従来、モデル圧縮と物理ストレージは分離される。
このアプローチでは、ストレージは圧縮されたモデルの各ビットを等しく扱い、各ビットに同じ量のリソースを割り当てるように強制される。
i) 各メモリセルの容量を最大化するためにアナログメモリを使用し, (ii) モデル圧縮と物理ストレージを共同で最適化し, メモリの有用性を最大化する。
論文 参考訳(メタデータ) (2021-02-15T18:19:07Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
本稿では、シーケンスモデリングのための効率的なニューラルネットワークであるMemformerを紹介する。
我々のモデルは長いシーケンスを処理する際に線形時間複雑性と一定メモリ空間複雑性を実現する。
論文 参考訳(メタデータ) (2020-10-14T09:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。