論文の概要: Deep Representation Learning-Based Dynamic Trajectory Phenotyping for Acute Respiratory Failure in Medical Intensive Care Units
- arxiv url: http://arxiv.org/abs/2405.02563v1
- Date: Sat, 4 May 2024 04:29:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:30:33.329783
- Title: Deep Representation Learning-Based Dynamic Trajectory Phenotyping for Acute Respiratory Failure in Medical Intensive Care Units
- Title(参考訳): 集中治療室における急性呼吸不全に対するDeep Representation Learning-based Dynamic Trajectory Phenotyping
- Authors: Alan Wu, Tilendra Choudhary, Pulakesh Upadhyaya, Ayman Ali, Philip Yang, Rishikesan Kamaleswaran,
- Abstract要約: セプシスによる急性呼吸不全(ARF)は予後不良の重篤な合併症である。
本稿では, 敗血症患者の臨床軌跡の異なるグループを同定するために, 深部表現学習に基づく表現型表現法を提案する。
- 参考スコア(独自算出の注目度): 4.9981612589160775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sepsis-induced acute respiratory failure (ARF) is a serious complication with a poor prognosis. This paper presents a deep representation learningbased phenotyping method to identify distinct groups of clinical trajectories of septic patients with ARF. For this retrospective study, we created a dataset from electronic medical records (EMR) consisting of data from sepsis patients admitted to medical intensive care units who required at least 24 hours of invasive mechanical ventilation at a quarternary care academic hospital in southeast USA for the years 2016-2021. A total of N=3349 patient encounters were included in this study. Clustering Representation Learning on Incomplete Time Series Data (CRLI) algorithm was applied to a parsimonious set of EMR variables in this data set. To validate the optimal number of clusters, the K-means algorithm was used in conjunction with dynamic time warping. Our model yielded four distinct patient phenotypes that were characterized as liver dysfunction/heterogeneous, hypercapnia, hypoxemia, and multiple organ dysfunction syndrome by a critical care expert. A Kaplan-Meier analysis to compare the 28-day mortality trends exhibited significant differences (p < 0.005) between the four phenotypes. The study demonstrates the utility of our deep representation learning-based approach in unraveling phenotypes that reflect the heterogeneity in sepsis-induced ARF in terms of different mortality outcomes and severity. These phenotypes might reveal important clinical insights into an effective prognosis and tailored treatment strategies.
- Abstract(参考訳): セプシスによる急性呼吸不全(ARF)は予後不良の重篤な合併症である。
本稿では, 敗血症患者の臨床軌跡の異なるグループを同定するために, 深部表現学習に基づく表現型表現法を提案する。
本研究は,2016-2021年の間,米国南東部の病院で,少なくとも24時間以上の侵襲的機械換気を必要とした医療ユニットに入院した敗血症患者のデータからなる電子カルテ(EMR)からデータセットを作成した。
対象はN=3349例であった。
不完全時系列データ(CRLI)アルゴリズムによるクラスタリング表現学習を,本データセットの同相なEMR変数集合に適用した。
クラスタ数を最適に評価するために、K平均アルゴリズムが動的時間ワープと共に使用された。
本モデルでは,肝機能障害,肝機能異常,高炭酸血症,低酸素血症,多臓器機能障害の4種類の表現型を要した。
28日間の死亡傾向を比較したKaplan-Meier分析では,4つの表現型間に有意差(p < 0.005)が認められた。
本研究は, 重症度と死亡率の相違から, 敗血症誘発性ARFの不均一性を反映した表現型を解き放つための, 深層表現型学習アプローチの有用性を実証した。
これらの表現型は、効果的な予後と治療戦略に関する重要な臨床的洞察を明らかにする可能性がある。
関連論文リスト
- Collaborative learning of common latent representations in routinely
collected multivariate ICU physiological signals [0.0]
本アルゴリズムは,Long Short-Term Memory (LSTM) ネットワークと協調フィルタリングの概念を統合し,患者間で共通する生理的状態を同定する。
脳損傷者における脳内高血圧(IH)検出のための実世界ICU臨床データを用いて,AUCが0.889,APが0.725であった。
論文 参考訳(メタデータ) (2024-02-27T22:10:51Z) - Identifying acute illness phenotypes via deep temporal interpolation and
clustering network on physiologic signatures [6.315312816818801]
入院初日は臨床経過に影響を及ぼすが、早期臨床判断はデータ異常によることが多い。
成人75,762人を対象に, 単中心縦型EHRデータセットを作成し, 6時間以上にわたって第3次ケアセンターに入院した。
本研究では,スパース,不規則にサンプリングされたバイタルサインデータから潜時表現を抽出する深部時間クラスタリングとクラスタリングネットワークを提案する。
論文 参考訳(メタデータ) (2023-07-27T21:05:23Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - ALRt: An Active Learning Framework for Irregularly Sampled Temporal Data [1.370633147306388]
セプシスは病院内の多くの患者に致命的な症状である。
本稿では, 短時間の時間的地平線に対するアクティブラーニング・リカレントニューラルネットワーク(ALRts)の利用により, セプシスなどの不規則な時間的事象の予測を改善することを提案する。
限られたデータに基づいてトレーニングされたアクティブラーニングRNNモデルは、トレーニングデータセット全体を用いたモデルに匹敵する堅牢なセシス予測を形成することができることを示す。
論文 参考訳(メタデータ) (2022-12-13T04:31:49Z) - A hybrid machine learning/deep learning COVID-19 severity predictive
model from CT images and clinical data [0.0]
患者を非icuとicuの2つのカテゴリーに分類するハイブリッド機械学習/深層学習モデルを開発した。
ベースラインCT画像の3次元患者レベルのCNN分類器を特徴抽出器として用いる。
本モデルは,臨床診断を医師に提供し,結果クラスに属する確率スコアと特徴のケースベースSHAPによる解釈を提供することを目的としている。
論文 参考訳(メタデータ) (2021-05-13T08:39:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
ヘテロジニアスEHRを処理するためのディープラーニングに基づく教師なしフレームワークを提案する。
患者層形成を効果的かつ効果的に行うことができる患者表現を導出する。
論文 参考訳(メタデータ) (2020-03-14T00:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。