論文の概要: cuTN-QSVM: cuTensorNet-accelerated Quantum Support Vector Machine with cuQuantum SDK
- arxiv url: http://arxiv.org/abs/2405.02630v1
- Date: Sat, 4 May 2024 10:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 19:10:59.448868
- Title: cuTN-QSVM: cuTensorNet-accelerated Quantum Support Vector Machine with cuQuantum SDK
- Title(参考訳): cuTN-QSVM:cuQuantum SDKを用いたcuTensorNetアクセラレーション量子サポートベクトルマシン
- Authors: Kuan-Cheng Chen, Tai-Yue Li, Yun-Yuan Wang, Simon See, Chun-Chieh Wang, Robert Willie, Nan-Yow Chen, An-Cheng Yang, Chun-Yu Lin,
- Abstract要約: 本稿では,NVIDIA の cuQuantum SDK で実現される計算の進歩に着目し,量子支援ベクトルマシン (QSVM) の適用について検討する。
CuTensorNetは、NVIDIA A100 GPUで数秒で完了するシミュレーションをスピードアップする。
我々のQSVMは、100以上のインスタンスをトレーニングするためのMNISTデータセット内の挑戦的な分類を最大95%達成し、古典的なSVMの能力を上回っています。
- 参考スコア(独自算出の注目度): 15.703832395030355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the application of Quantum Support Vector Machines (QSVMs) with an emphasis on the computational advancements enabled by NVIDIA's cuQuantum SDK, especially leveraging the cuTensorNet library. We present a simulation workflow that substantially diminishes computational overhead, as evidenced by our experiments, from exponential to quadratic cost. While state vector simulations become infeasible for qubit counts over 50, our evaluation demonstrates that cuTensorNet speeds up simulations to be completed within seconds on the NVIDIA A100 GPU, even for qubit counts approaching 784. By employing multi-GPU processing with Message Passing Interface (MPI), we document a marked decrease in computation times, effectively demonstrating the strong linear speedup of our approach for increasing data sizes. This enables QSVMs to operate efficiently on High-Performance Computing (HPC) systems, thereby opening a new window for researchers to explore complex quantum algorithms that have not yet been investigated. In accuracy assessments, our QSVM achieves up to 95\% on challenging classifications within the MNIST dataset for training sets larger than 100 instances, surpassing the capabilities of classical SVMs. These advancements position cuTensorNet within the cuQuantum SDK as a pivotal tool for scaling quantum machine learning simulations and potentially signpost the seamless integration of such computational strategies as pivotal within the Quantum-HPC ecosystem.
- Abstract(参考訳): 本稿では,NVIDIA の cuQuantum SDK で実現される計算の進歩,特に cuTensorNet ライブラリを活用した量子支援ベクトルマシン (QSVM) の適用について検討する。
本稿では,実験によって実証された計算オーバーヘッドを指数的から二次的コストに大幅に低減するシミュレーションワークフローを提案する。
状態ベクトルシミュレーションは50以上の量子ビット数では実現不可能になるが,我々はcuTensorNetがNVIDIA A100 GPU上で数秒で完了するシミュレーションを高速化することを示した。
マルチGPU処理をMPI(Message Passing Interface)と組み合わせることで,計算時間の顕著な減少を報告し,データサイズの増加に対するアプローチの強い線形高速化を効果的に実証する。
これにより、QSVMは高性能コンピューティング(HPC)システム上で効率的に動作し、研究者がまだ研究されていない複雑な量子アルゴリズムを探索するための新しい窓を開くことができる。
精度評価では、従来のSVMの能力を超え、100以上のトレーニングセットのためのMNISTデータセット内の挑戦的な分類に対して、最大95%を達成する。
これらの進歩は、cuQuantum SDK内のcuTensorNetを量子機械学習シミュレーションをスケールするための重要なツールとして位置づけ、量子-HPCエコシステム内で重要なような計算戦略のシームレスな統合を示唆する可能性がある。
関連論文リスト
- Machine Learning in the Quantum Age: Quantum vs. Classical Support
Vector Machines [0.0]
この研究は、古典的および量子計算パラダイムにおける機械学習アルゴリズムの有効性を判断する努力である。
我々は、Irisデータセット上で量子ハードウェアで動作する古典的なSVMと量子サポートベクトルマシンの分類技術を精査する。
論文 参考訳(メタデータ) (2023-10-17T01:06:59Z) - cuQuantum SDK: A High-Performance Library for Accelerating Quantum
Science [7.791505883503921]
本稿では,GPU加速量子回路シミュレーションのための実装可能なプリミティブの最先端ライブラリであるNVIDIA cuQuantum SDKを紹介する。
cuQuantum SDKは、量子情報科学コミュニティが開発した量子回路シミュレータの高速化とスケールアップを目的として開発された。
論文 参考訳(メタデータ) (2023-08-03T19:28:02Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - Cloud on-demand emulation of quantum dynamics with tensor networks [48.7576911714538]
プログラム可能なアナログ量子処理ユニット(QPU)を模擬したテンソルネットワークに基づくエミュレータを導入する。
ソフトウェアパッケージは、HPCクラスタ上でジョブを実行し、それらをQPUデバイスにディスパッチするための共通インターフェースを提供するクラウドプラットフォームに完全に統合されている。
論文 参考訳(メタデータ) (2023-02-10T14:08:05Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
本稿では、量子機械学習(QML)と呼ばれる機械学習アルゴリズムに適用されたQCの高速化性能について分析する。
実際の量子コンピュータの限界により、QML法はQiskitやIBM Quantumといったオープンソースの量子シミュレータ上で実装された。
興味深いことに、実験結果は、SSC攻撃の古典的アプローチと比較して計算時間と精度の低下を示すことによって、QCの約束を早めることと異なる。
論文 参考訳(メタデータ) (2022-04-04T21:16:06Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
本稿では,量子支援ベクトルマシン(QSVM)アルゴリズムとその回路バージョンについて検討する。
量子回路におけるトレーニングおよびテストデータサンプルを符号化し,QSVM回路実装手法の効率性を計算する。
我々は、現在のNISQデバイスにQSVMアルゴリズムを適用する際に直面する技術的困難を強調した。
論文 参考訳(メタデータ) (2021-12-13T18:59:39Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。