Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- URL: http://arxiv.org/abs/2405.02957v1
- Date: Sun, 5 May 2024 14:53:51 GMT
- Title: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- Authors: Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, Yang Liu,
- Abstract summary: We introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness.
All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs)
- Score: 14.167006531064517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
Related papers
- MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains.
This paper proposes MedAide, an omni medical multi-agent collaboration framework for specialized healthcare services.
arXiv Detail & Related papers (2024-10-16T13:10:27Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
We develop an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and Reasoning Retrieval-Augmented Generation (Reasoning RAG) as the generation backbone.
Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization.
Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1)
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents)
The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes.
MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge.
arXiv Detail & Related papers (2024-04-22T06:30:05Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
We introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine.
This engine autonomously coordinates and deploys a set of specialized medical AI tools.
We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases.
arXiv Detail & Related papers (2024-04-06T15:50:19Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Management and Detection System for Medical Surgical Equipment [68.8204255655161]
Retained surgical bodies (RSB) are any foreign bodies left inside the patient after a medical procedure.
This paper describes the engineering process we have done to explore the design space, define a feasible solution, and simulate, verify, and validate a state-of-the-art Cyber-Physical System.
arXiv Detail & Related papers (2022-11-04T10:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.