Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- URL: http://arxiv.org/abs/2405.02957v1
- Date: Sun, 5 May 2024 14:53:51 GMT
- Title: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- Authors: Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, Yang Liu,
- Abstract summary: We introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness.
All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs)
- Score: 14.167006531064517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
Related papers
- Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions [16.50490537786593]
We introduce MedAgentSim, an open-source simulated clinical environment with doctor, patient, and measurement agents.
Unlike prior approaches, our framework requires doctor agents to actively engage with patients through multi-turn conversations.
We incorporate self improvement mechanisms that allow models to iteratively refine their diagnostic strategies.
arXiv Detail & Related papers (2025-03-28T17:59:53Z) - MediTools -- Medical Education Powered by LLMs [0.0]
This research project leverages large language models to enhance medical education and address workflow challenges.
Our first tool is a dermatology case simulation tool that uses real patient images depicting various dermatological conditions.
The application also features two additional tools: an AI-enhanced tool for engaging with LLMs to gain deeper insights into research papers, and a Google News tool that offers LLM generated summaries of articles for various medical specialties.
arXiv Detail & Related papers (2025-03-28T03:57:32Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - M^3Builder: A Multi-Agent System for Automated Machine Learning in Medical Imaging [54.40890979694209]
We present M3Builder, a novel multi-agent system designed to automate machine learning (ML) in medical imaging.
At its core, M3Builder employs four specialized agents that collaborate to tackle complex, multi-step medical ML.
Compared to existing ML agentic designs, M3Builder shows superior performance on completing ML tasks in medical imaging.
arXiv Detail & Related papers (2025-02-27T17:29:46Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains.
This paper proposes MedAide, an omni medical multi-agent collaboration framework for specialized healthcare services.
arXiv Detail & Related papers (2024-10-16T13:10:27Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
We develop an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and Reasoning Retrieval-Augmented Generation (Reasoning RAG) as the generation backbone.
Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization.
Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1)
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents)
The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes.
MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge.
arXiv Detail & Related papers (2024-04-22T06:30:05Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
We introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine.
This engine autonomously coordinates and deploys a set of specialized medical AI tools.
We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases.
arXiv Detail & Related papers (2024-04-06T15:50:19Z) - Exploring Autonomous Agents through the Lens of Large Language Models: A Review [0.0]
Large Language Models (LLMs) are transforming artificial intelligence, enabling autonomous agents to perform diverse tasks across various domains.
They face challenges such as multimodality, human value alignment, hallucinations, and evaluation.
Evaluation platforms like AgentBench, WebArena, and ToolLLM provide robust methods for assessing these agents in complex scenarios.
arXiv Detail & Related papers (2024-04-05T22:59:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.
The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.
Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Management and Detection System for Medical Surgical Equipment [68.8204255655161]
Retained surgical bodies (RSB) are any foreign bodies left inside the patient after a medical procedure.
This paper describes the engineering process we have done to explore the design space, define a feasible solution, and simulate, verify, and validate a state-of-the-art Cyber-Physical System.
arXiv Detail & Related papers (2022-11-04T10:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.