論文の概要: Comparing Quantum Encoding Techniques
- arxiv url: http://arxiv.org/abs/2410.09121v2
- Date: Wed, 23 Oct 2024 02:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:13:24.715298
- Title: Comparing Quantum Encoding Techniques
- Title(参考訳): 量子符号化技術の比較
- Authors: Nidhi Munikote,
- Abstract要約: 本研究では、特にハイブリッド量子古典機械学習の文脈における符号化手法について検討する。
本研究は,QuClassi量子ニューラルネットワークアーキテクチャを用いて,MNISTデータセットから3'および6'桁のバイナリ分類を行い,精度,エントロピー,損失,ノイズ耐性などの指標を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As quantum computers continue to become more capable, the possibilities of their applications increase. For example, quantum techniques are being integrated with classical neural networks to perform machine learning. In order to be used in this way, or for any other widespread use like quantum chemistry simulations or cryptographic applications, classical data must be converted into quantum states through quantum encoding. There are three fundamental encoding methods: basis, amplitude, and rotation, as well as several proposed combinations. This study explores the encoding methods, specifically in the context of hybrid quantum-classical machine learning. Using the QuClassi quantum neural network architecture to perform binary classification of the `3' and `6' digits from the MNIST datasets, this study obtains several metrics such as accuracy, entropy, loss, and resistance to noise, while considering resource usage and computational complexity to compare the three main encoding methods.
- Abstract(参考訳): 量子コンピュータの能力が向上し続ければ、その応用の可能性も高まる。
例えば、量子技術は機械学習を実行するために古典的なニューラルネットワークと統合されている。
このように、または量子化学シミュレーションや暗号アプリケーションのような他の広く使われるために、古典的なデータは量子符号化によって量子状態に変換する必要がある。
基礎、振幅、回転の3つの基本的な符号化法と、いくつかの提案された組み合わせがある。
本研究では、特にハイブリッド量子古典機械学習の文脈における符号化手法について検討する。
本研究は、QuClassi量子ニューラルネットワークアーキテクチャを用いて、MNISTデータセットから `3' と `6' 桁のバイナリ分類を行い、資源使用量と計算複雑性を考慮しつつ、精度、エントロピー、損失、ノイズ耐性などのいくつかの指標を得る。
関連論文リスト
- Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
本稿では,文字列ダイアグラムの観点からハイブリッドアルゴリズムを記述するための公式なフレームワークを開発する。
弦図の特筆すべき特徴は、量子古典的インタフェースに対応する関手ボックスの使用である。
論文 参考訳(メタデータ) (2024-07-04T06:37:16Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - Understanding the effects of data encoding on quantum-classical convolutional neural networks [0.0]
量子化法の主要な構成要素は、古典的なデータを量子状態に埋め込むために使用されるデータ符号化戦略である。
本研究では、2つの医用画像データセット上での量子古典的畳み込みニューラルネットワーク(QCCNN)の性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-05-05T18:44:08Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
我々は、量子アルゴリズムの効率的な実現に、マルチレベル量子システム(quditsとしても知られる)をどのように利用できるかを示すいくつかのアイデアをレビューする。
我々は,マルチキュービットゲートの分解を簡略化するためのキューディットの活用技術と,単一キューディットで複数のキュービットを符号化することで量子情報を圧縮する技術に焦点をあてる。
これらの理論スキームは、閉じ込められたイオン、中性原子、超伝導接合、量子光など、様々な性質の量子コンピューティングプラットフォームで実装することができる。
論文 参考訳(メタデータ) (2023-11-20T18:34:19Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。