論文の概要: Concentration of Data Encoding in Parameterized Quantum Circuits
- arxiv url: http://arxiv.org/abs/2206.08273v1
- Date: Thu, 16 Jun 2022 16:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 20:14:05.223723
- Title: Concentration of Data Encoding in Parameterized Quantum Circuits
- Title(参考訳): パラメータ化量子回路におけるデータ符号化の集中
- Authors: Guangxi Li, Ruilin Ye, Xuanqiang Zhao, Xin Wang
- Abstract要約: 変分量子アルゴリズムは、有意義なタスクにおいて、短期的な量子アドバンテージを実現するための主要な戦略として認識されている。
本稿では、パラメータ化量子回路に基づく共通データ符号化戦略を考察し、進展する。
妥当な仮定の下では、平均符号化状態と最大混合状態の間の距離が明らかに上界であることが証明できる。
- 参考スコア(独自算出の注目度): 7.534037755267707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms have been acknowledged as a leading strategy
to realize near-term quantum advantages in meaningful tasks, including machine
learning and combinatorial optimization. When applied to tasks involving
classical data, such algorithms generally begin with quantum circuits for data
encoding and then train quantum neural networks (QNNs) to minimize target
functions. Although QNNs have been widely studied to improve these algorithms'
performance on practical tasks, there is a gap in systematically understanding
the influence of data encoding on the eventual performance. In this paper, we
make progress in filling this gap by considering the common data encoding
strategies based on parameterized quantum circuits. We prove that, under
reasonable assumptions, the distance between the average encoded state and the
maximally mixed state could be explicitly upper-bounded with respect to the
width and depth of the encoding circuit. This result in particular implies that
the average encoded state will concentrate on the maximally mixed state at an
exponential speed on depth. Such concentration seriously limits the
capabilities of quantum classifiers, and strictly restricts the
distinguishability of encoded states from a quantum information perspective. We
further support our findings by numerically verifying these results on both
synthetic and public data sets. Our results highlight the significance of
quantum data encoding in machine learning tasks and may shed light on future
encoding strategies.
- Abstract(参考訳): 変分量子アルゴリズムは、機械学習や組合せ最適化を含む有意義なタスクにおいて、短期的な量子アドバンテージを実現するための主要な戦略として認識されている。
古典的データを含むタスクに適用する場合、そのようなアルゴリズムは通常、データエンコーディングのための量子回路から始まり、ターゲット関数を最小限にするために量子ニューラルネットワーク(QNN)を訓練する。
QNNは、これらのアルゴリズムの性能を実用的なタスクで改善するために広く研究されているが、データエンコーディングが最終的なパフォーマンスに与える影響を体系的に理解する上でギャップがある。
本稿では、パラメータ化量子回路に基づく共通データ符号化戦略を考えることにより、このギャップを埋めることの進展について述べる。
妥当な仮定の下では、平均符号化状態と最大混合状態との距離は、符号化回路の幅と深さに関して明らかに上界であることが証明できる。
この結果は、特に平均符号化状態が深さの指数関数的な速度で最大混合状態に集中することを意味する。
このような濃度は量子分類器の能力を著しく制限し、量子情報の観点からの符号化状態の識別性を厳密に制限する。
我々は,これらの結果を合成データと公開データの両方で数値的に検証することにより,この知見をさらに支持する。
本研究は、機械学習タスクにおける量子データエンコーディングの重要性を強調し、今後のエンコーディング戦略に光を当てるかもしれない。
関連論文リスト
- Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Understanding the effects of data encoding on quantum-classical convolutional neural networks [0.0]
量子化法の主要な構成要素は、古典的なデータを量子状態に埋め込むために使用されるデータ符号化戦略である。
本研究では、2つの医用画像データセット上での量子古典的畳み込みニューラルネットワーク(QCCNN)の性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-05-05T18:44:08Z) - Classification of the Fashion-MNIST Dataset on a Quantum Computer [0.0]
古典的なデータを量子コンピュータに符号化する従来の方法は、コストがかかりすぎて、現在のハードウェアで実現可能な実験の規模が制限される。
現在利用可能な量子コンピュータのネイティブゲートセットとトポロジに適合する回路を用いて、符号化されたデータを作成する改良された変分アルゴリズムを提案する。
我々は、現在の量子コンピュータibmq-kolkata上で、符号化データセットに基づいて訓練された単純な量子変分分類器をデプロイし、適度な精度を達成する。
論文 参考訳(メタデータ) (2024-03-04T19:01:14Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Variational data encoding and correlations in quantum-enhanced machine
learning [2.436161840735876]
我々は,古典的データを量子状態に変換するための効果的な符号化プロトコルを開発した。
また、量子加速を妨げる必然的なノイズに対処する必要性にも対処する。
機械学習から学習の概念を適用することで、学習可能なプロセスを符号化するデータを描画する。
論文 参考訳(メタデータ) (2023-12-13T07:55:57Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。