論文の概要: Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search
- arxiv url: http://arxiv.org/abs/2405.03480v1
- Date: Mon, 06 May 2024 13:53:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:58:53.756122
- Title: Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search
- Title(参考訳): パーソナライズされたマルチセッション対話検索のためのLLM拡張対話構築
- Authors: Hideaki Joko, Shubham Chatterjee, Andrew Ramsay, Arjen P. de Vries, Jeff Dalton, Faegheh Hasibi,
- Abstract要約: 提案手法は,大規模言語モデルを用いて,個人化された対話を生成するために,一人の人間労働者を誘導する。
LAPSは大規模、人書き、マルチセッション、マルチドメインの会話を収集できる。
その結果,抽出された嗜好を用いて明示的に生成した応答は,ユーザの実際の嗜好と一致していることがわかった。
- 参考スコア(独自算出の注目度): 9.243535345193711
- License:
- Abstract: The future of conversational agents will provide users with personalized information responses. However, a significant challenge in developing models is the lack of large-scale dialogue datasets that span multiple sessions and reflect real-world user preferences. Previous approaches rely on experts in a wizard-of-oz setup that is difficult to scale, particularly for personalized tasks. Our method, LAPS, addresses this by using large language models (LLMs) to guide a single human worker in generating personalized dialogues. This method has proven to speed up the creation process and improve quality. LAPS can collect large-scale, human-written, multi-session, and multi-domain conversations, including extracting user preferences. When compared to existing datasets, LAPS-produced conversations are as natural and diverse as expert-created ones, which stays in contrast with fully synthetic methods. The collected dataset is suited to train preference extraction and personalized response generation. Our results show that responses generated explicitly using extracted preferences better match user's actual preferences, highlighting the value of using extracted preferences over simple dialogue history. Overall, LAPS introduces a new method to leverage LLMs to create realistic personalized conversational data more efficiently and effectively than previous methods.
- Abstract(参考訳): 対話エージェントの未来は、ユーザーに対してパーソナライズされた情報応答を提供する。
しかし、モデルを開発する上で重要な課題は、複数のセッションにまたがって実際のユーザの好みを反映する大規模な対話データセットの欠如である。
従来のアプローチは、特にパーソナライズされたタスクにおいて、スケールアップが難しいウィザード・オブ・オズのセットアップの専門家に依存していた。
我々の手法であるLAPSは、大きな言語モデル(LLM)を用いて、個人化された対話を生成するために1人の人間労働者を誘導することで、この問題に対処する。
この方法は、作成プロセスをスピードアップし、品質を向上させることが証明されている。
LAPSは、大規模、人書き、マルチセッション、マルチドメインの会話を収集し、ユーザの好みを抽出する。
既存のデータセットと比較すると、LAPSが生成する会話は専門家が作成したものと同じくらい自然で多様なものであり、完全に合成された手法とは対照的である。
収集されたデータセットは、選好抽出とパーソナライズされた応答生成を訓練するのに適している。
その結果,抽出した嗜好を明示的に用いた応答はユーザの実際の嗜好と一致し,単純な対話履歴よりも抽出した選好を使うことの価値が強調された。
全体として、LAPSはLLMを活用して、従来の方法よりも効率的かつ効果的に、現実的な対話データを作成する新しい手法を導入している。
関連論文リスト
- Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
本稿では,MLLMのパーソナライズのためのRAP(Retrieval Augmented Personalization)フレームワークを紹介する。
RAPは、外部データベースを更新することで、リアルタイムの概念編集を可能にする。
RAP-MLLMは、追加の微調整なしで無限の視覚概念に一般化することができる。
論文 参考訳(メタデータ) (2024-10-17T09:10:26Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
従来のターンベースのチャットシステムは、ユーザが応答を生成している間に、システムが言葉で対話することを防ぐ。
これらの制限を克服するため,既存のLCMをユーザを聴きながら出力を生成し,ユーザに対して即時フィードバックを提供する。
クエリとレスポンスの時間スライスを交互に行うデータセットを構築し、インスタントインタラクションにおける典型的なフィードバックタイプをカバーする。
論文 参考訳(メタデータ) (2024-06-22T03:20:10Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
本稿では,大規模言語モデル(LLM)を用いたパーソナライズされたマルチモーダル生成手法を提案する。
2つのデータセットに関する広範な実験を通じて、その応用を実証し、その性能を検証する。
PMGのパーソナライゼーションはLPIPSで最大8%向上し, 生成精度は向上した。
論文 参考訳(メタデータ) (2024-04-07T03:05:57Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
論文 参考訳(メタデータ) (2023-10-30T23:40:41Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
我々は,対話履歴をより多く処理し,より正確なペルソナ情報を得ることのできる,ユーザ対話履歴を大規模に洗練することを提案する。
具体的には、3つの個人情報精算器とパーソナライズされた応答生成器で構成されるMSPモデルを設計する。
論文 参考訳(メタデータ) (2022-04-18T02:02:56Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。