論文の概要: Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2405.03582v2
- Date: Thu, 03 Oct 2024 12:18:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-05 03:34:11.302430
- Title: Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting
- Title(参考訳): 不規則サンプリング時系列予測のための関数潜在ダイナミクス
- Authors: Christian Klötergens, Vijaya Krishna Yalavarthi, Maximilian Stubbemann, Lars Schmidt-Thieme,
- Abstract要約: 不規則にサンプリングされた時系列は、医療、気候、天文学など、複数の現実世界の応用でしばしば見られる。
機能潜在ダイナミクス(FLD)と呼ばれるモデル群を提案する。
正規微分方程式(ODE)を解く代わりに、モデル内の連続潜時状態を特定するために、常に点が存在する単純な曲線を用いる。
- 参考スコア(独自算出の注目度): 5.359176539960004
- License:
- Abstract: Irregularly sampled time series with missing values are often observed in multiple real-world applications such as healthcare, climate and astronomy. They pose a significant challenge to standard deep learning models that operate only on fully observed and regularly sampled time series. In order to capture the continuous dynamics of the irregular time series, many models rely on solving an Ordinary Differential Equation (ODE) in the hidden state. These ODE-based models tend to perform slow and require large memory due to sequential operations and a complex ODE solver. As an alternative to complex ODE-based models, we propose a family of models called Functional Latent Dynamics (FLD). Instead of solving the ODE, we use simple curves which exist at all time points to specify the continuous latent state in the model. The coefficients of these curves are learned only from the observed values in the time series ignoring the missing values. Through extensive experiments, we demonstrate that FLD achieves better performance compared to the best ODE-based model while reducing the runtime and memory overhead. Specifically, FLD requires an order of magnitude less time to infer the forecasts compared to the best performing forecasting model.
- Abstract(参考訳): 不規則にサンプリングされた時系列は、医療、気候、天文学など、複数の現実世界の応用でしばしば見られる。
完全に観察され定期的にサンプリングされる時系列のみで動作する標準的なディープラーニングモデルに対して、これらは大きな課題となる。
不規則時系列の連続力学を捉えるために、多くのモデルは正規微分方程式(ODE)を隠された状態で解くことに頼っている。
これらのODEベースのモデルは、シーケンシャルな操作と複雑なODEソルバにより、動作が遅く、大きなメモリを必要とする傾向にある。
複雑なODEモデルに代わるものとして,FLD(Functional Latent Dynamics)と呼ばれるモデル群を提案する。
ODEを解く代わりに、すべての時点に存在する単純な曲線を使って、モデルの連続的な潜伏状態を指定する。
これらの曲線の係数は、欠落した値を無視した時系列の観測値からのみ学習される。
大規模な実験により、FLDは最高のODEベースモデルよりも優れた性能を実現し、ランタイムとメモリオーバーヘッドを低減できることを示した。
具体的には、最高の予測モデルと比較して予測を推測するのに、FLDは桁違いに時間を要する。
関連論文リスト
- Path-minimizing Latent ODEs for improved extrapolation and inference [0.0]
潜在ODEモデルは動的システムの柔軟な記述を提供するが、外挿と複雑な非線形力学の予測に苦労することがある。
本稿では、時間に依存しない潜在表現を奨励することで、この二分法を利用する。
遅延空間における一般的な変分ペナルティを各システムのパス長の$ell$ペナルティに置き換えることで、モデルは異なる構成のシステムと容易に区別できるデータ表現を学ぶ。
これにより、GRU、RNN、LSTM/デコーダによるベースラインODEモデルと比較して、より高速なトレーニング、より小さなモデル、より正確で長時間の外挿が可能となる。
論文 参考訳(メタデータ) (2024-10-11T15:50:01Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series [11.261457967759688]
シーケンス表現の堅牢性を高めるために設計された,革新的なニューラルアーキテクチャであるSeqLinkを紹介する。
我々はSeqLinkが断続時系列のモデリングを改善し、一貫して最先端のアプローチより優れていることを示した。
論文 参考訳(メタデータ) (2022-12-07T10:25:59Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
本研究では, 1つの観測解の時系列データから, スカラー自律常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを提案する。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たに観測された解の法則を推測することができる。
論文 参考訳(メタデータ) (2022-11-05T07:07:58Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
非定常条件分布を時間とともにモデル化する新しい手法を提案する。
我々のモデルは、最先端のディープラーニングソリューションよりも定常的でない時系列に適応できることを示します。
論文 参考訳(メタデータ) (2022-09-17T21:40:02Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
本稿は,現代のニューラルODEを,時系列モデリングアプリケーションのためのより単純なモデルに還元することはできないことを示す。
ニューラルODEの複雑さは、従来の時系列モデリングツールと比較されるか、超える。
本稿では,ニューラルネットワークとODEシステムを用いた時系列モデリングの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-06-07T13:49:40Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。