論文の概要: Discovering ordinary differential equations that govern time-series
- arxiv url: http://arxiv.org/abs/2211.02830v1
- Date: Sat, 5 Nov 2022 07:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:58:36.281056
- Title: Discovering ordinary differential equations that govern time-series
- Title(参考訳): 時系列を支配する常微分方程式の発見
- Authors: S\"oren Becker, Michal Klein, Alexander Neitz, Giambattista
Parascandolo, Niki Kilbertus
- Abstract要約: 本研究では, 1つの観測解の時系列データから, スカラー自律常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを提案する。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たに観測された解の法則を推測することができる。
- 参考スコア(独自算出の注目度): 65.07437364102931
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Natural laws are often described through differential equations yet finding a
differential equation that describes the governing law underlying observed data
is a challenging and still mostly manual task. In this paper we make a step
towards the automation of this process: we propose a transformer-based
sequence-to-sequence model that recovers scalar autonomous ordinary
differential equations (ODEs) in symbolic form from time-series data of a
single observed solution of the ODE. Our method is efficiently scalable: after
one-time pretraining on a large set of ODEs, we can infer the governing laws of
a new observed solution in a few forward passes of the model. Then we show that
our model performs better or on par with existing methods in various test cases
in terms of accurate symbolic recovery of the ODE, especially for more complex
expressions.
- Abstract(参考訳): 自然法則はしばしば微分方程式を通して記述されるが、観測データに基づく法則を記述する微分方程式は難しいが、ほとんどの場合手作業である。
本稿では,このプロセスの自動化に向けて一歩進める: ODEの単一観測解の時系列データから,スカラー自律常微分方程式(ODE)をシンボリック形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンスモデルを提案する。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たに観測された解の法則を推測することができる。
次に,本モデルがODEの正確なシンボル回復,特により複雑な表現において,様々なテストケースにおける既存手法と同等あるいは同等に動作することを示す。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
単一溶液軌道の不規則サンプリングおよび雑音観測から,スカラー常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを開発した。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たな観測解の法則を推測することができる。
論文 参考訳(メタデータ) (2023-07-24T08:46:12Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Constraining Gaussian Processes to Systems of Linear Ordinary
Differential Equations [5.33024001730262]
LODE-GP は定数係数を持つ線形同次ODEの系に従う。
複数の実験においてLODE-GPの有効性を示す。
論文 参考訳(メタデータ) (2022-08-26T09:16:53Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
ベイズフィルタを用いて解過程を直接句する常微分方程式 (odes) の解法の新しいクラスを示す。
その後、拡張カルマンフィルタの単一の線形複雑化パスにおいて、潜力とODE溶液のベイズ推定を近似することができるようになる。
本研究では,covid-19流行データに基づく非パラメトリックsirdモデルを訓練することにより,アルゴリズムの表現力と性能を示す。
論文 参考訳(メタデータ) (2021-03-18T10:36:09Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z) - Neural Controlled Differential Equations for Irregular Time Series [17.338923885534197]
通常の微分方程式はその初期条件によって決定され、その後の観測に基づいて軌道を調整するメカニズムは存在しない。
ここでは、Emph制御微分方程式のよく理解された数学を通して、これをどのように解決するかを示す。
実験により,本モデルが類似モデル (ODE や RNN をベースとした) に対して, 種々のデータセットに対する実験的検討において, 最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-05-18T17:52:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。