論文の概要: False Sense of Security in Explainable Artificial Intelligence (XAI)
- arxiv url: http://arxiv.org/abs/2405.03820v1
- Date: Mon, 6 May 2024 20:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:04:44.961043
- Title: False Sense of Security in Explainable Artificial Intelligence (XAI)
- Title(参考訳): 説明可能な人工知能(XAI)におけるセキュリティの虚偽感覚
- Authors: Neo Christopher Chung, Hongkyou Chung, Hearim Lee, Hongbeom Chung, Lennart Brocki, George Dyer,
- Abstract要約: 我々は、AI規制と現在の市場条件が効果的なAIガバナンスと安全性を脅かすと主張している。
政府は明確な立法と政策ステートメントを通じて説明可能性の問題に明示的に対処しない限り、AIガバナンスのリスクは空虚な「ボックス・ティック」のエクササイズになる。
- 参考スコア(独自算出の注目度): 3.298597939573779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A cautious interpretation of AI regulations and policy in the EU and the USA place explainability as a central deliverable of compliant AI systems. However, from a technical perspective, explainable AI (XAI) remains an elusive and complex target where even state of the art methods often reach erroneous, misleading, and incomplete explanations. "Explainability" has multiple meanings which are often used interchangeably, and there are an even greater number of XAI methods - none of which presents a clear edge. Indeed, there are multiple failure modes for each XAI method, which require application-specific development and continuous evaluation. In this paper, we analyze legislative and policy developments in the United States and the European Union, such as the Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, the AI Act, the AI Liability Directive, and the General Data Protection Regulation (GDPR) from a right to explanation perspective. We argue that these AI regulations and current market conditions threaten effective AI governance and safety because the objective of trustworthy, accountable, and transparent AI is intrinsically linked to the questionable ability of AI operators to provide meaningful explanations. Unless governments explicitly tackle the issue of explainability through clear legislative and policy statements that take into account technical realities, AI governance risks becoming a vacuous "box-ticking" exercise where scientific standards are replaced with legalistic thresholds, providing only a false sense of security in XAI.
- Abstract(参考訳): EUと米国におけるAI規制とポリシーの慎重な解釈は、準拠するAIシステムの中心的な提供物として説明可能性を置いている。
しかし、技術的観点から見れば、説明可能なAI(XAI)は、最先端の手法でさえしばしば誤った、誤解を招く、不完全な説明に達するという、明らかに複雑なターゲットのままである。
「説明可能性」は、しばしば相互に使用される複数の意味を持ち、さらに多くのXAIメソッドが存在します。
実際、各XAIメソッドには複数の障害モードがあり、アプリケーション固有の開発と継続的な評価が必要である。
本稿では、米国と欧州連合の立法・政策開発、例えば、人工知能の安全・安全・信頼性開発・利用に関する執行命令、AI法、AI責任指令、一般データ保護規則(GDPR)を、説明的観点から分析する。
これらのAI規制と現在の市場状況は、信頼できる、説明責任のある、透明なAIの目的が、意味のある説明を提供するためのAIオペレーターの疑わしい能力と本質的に関連しているため、効果的なAIガバナンスと安全を脅かしている、と我々は主張する。
政府は、技術的現実を考慮に入れた明確な立法と政策ステートメントを通じて説明可能性の問題に明示的に対処しない限り、科学標準を法的基準に置き換え、XAIにおける誤ったセキュリティ感覚を提供する、空虚な「ボックス・ティキング」演習となる。
関連論文リスト
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
Particip-AIは、現在および将来のAIユースケースと、非専門家から損害と利益を収集するフレームワークである。
人口統計学的に多様な参加者295名から回答を得た。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
本稿では,安全かつ信頼性の高い自動運転のための説明可能な手法に関する,最初の体系的な文献レビューを紹介する。
我々は、ADにおける安全で信頼性の高いAIに対するXAIの5つの重要な貢献を特定し、それらは解釈可能な設計、解釈可能な代理モデル、解釈可能なモニタリング、補助的な説明、解釈可能な検証である。
我々は、これらのコントリビューションを統合するためにSafeXと呼ばれるモジュラーフレームワークを提案し、同時にAIモデルの安全性を確保しながら、ユーザへの説明提供を可能にした。
論文 参考訳(メタデータ) (2024-02-08T09:08:44Z) - How VADER is your AI? Towards a definition of artificial intelligence
systems appropriate for regulation [41.94295877935867]
最近のAI規制提案では、ICT技術、アプローチ、AIではないシステムに影響を与えるAI定義が採用されている。
本稿では,AI定義の規制(VADER)が適切に定義されているかを評価するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-07T17:41:15Z) - Explainable AI is Responsible AI: How Explainability Creates Trustworthy
and Socially Responsible Artificial Intelligence [9.844540637074836]
これは責任あるAIのトピックであり、信頼できるAIシステムを開発する必要性を強調している。
XAIは、責任あるAI(RAI)のためのビルディングブロックとして広く考えられている。
以上の結果から,XAIはRAIのすべての柱にとって不可欠な基盤である,という結論に至った。
論文 参考訳(メタデータ) (2023-12-04T00:54:04Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Beyond XAI:Obstacles Towards Responsible AI [0.0]
説明可能性の方法とその評価戦略は、現実世界の文脈に多くの制限を与える。
本稿では、これらの制限について検討し、責任あるAIの搭乗者コンテキストにおけるそれらの影響について論じる。
論文 参考訳(メタデータ) (2023-09-07T11:08:14Z) - Explainability in AI Policies: A Critical Review of Communications,
Reports, Regulations, and Standards in the EU, US, and UK [1.5039745292757671]
我々は、EU、米国、英国における説明可能性に関する政策と標準に関する最初のテーマとギャップの分析を行う。
政策は、しばしば説明のための粗い概念と要求によって知らされる。
本稿では,AIシステムの規則における説明可能性への対処法を提案する。
論文 参考訳(メタデータ) (2023-04-20T07:53:07Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。