Predicting Lung Disease Severity via Image-Based AQI Analysis using Deep Learning Techniques
- URL: http://arxiv.org/abs/2405.03981v1
- Date: Tue, 7 May 2024 03:42:49 GMT
- Title: Predicting Lung Disease Severity via Image-Based AQI Analysis using Deep Learning Techniques
- Authors: Anvita Mahajan, Sayali Mate, Chinmayee Kulkarni, Suraj Sawant,
- Abstract summary: The study aims to forecast additional atmospheric pollutants like AQI, PM10, O3, CO, SO2, NO2 in addition to PM2.5 levels.
The approach used in this paper uses VGG16 model for feature extraction in images and neural network for predicting AQI.
The neural network model for predicting AQI achieved training accuracy of 88.54 % and testing accuracy of 87.44%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution is a significant health concern worldwide, contributing to various respiratory diseases. Advances in air quality mapping, driven by the emergence of smart cities and the proliferation of Internet-of-Things sensor devices, have led to an increase in available data, fueling momentum in air pollution forecasting. The objective of this study is to devise an integrated approach for predicting air quality using image data and subsequently assessing lung disease severity based on Air Quality Index (AQI).The aim is to implement an integrated approach by refining existing techniques to improve accuracy in predicting AQI and lung disease severity. The study aims to forecast additional atmospheric pollutants like AQI, PM10, O3, CO, SO2, NO2 in addition to PM2.5 levels. Additionally, the study aims to compare the proposed approach with existing methods to show its effectiveness. The approach used in this paper uses VGG16 model for feature extraction in images and neural network for predicting AQI.In predicting lung disease severity, Support Vector Classifier (SVC) and K-Nearest Neighbors (KNN) algorithms are utilized. The neural network model for predicting AQI achieved training accuracy of 88.54 % and testing accuracy of 87.44%,which was measured using loss function, while the KNN model used for predicting lung disease severity achieved training accuracy of 98.4% and testing accuracy of 97.5% In conclusion, the integrated approach presented in this study forecasts air quality and evaluates lung disease severity, achieving high testing accuracies of 87.44% for AQI and 97.5% for lung disease severity using neural network, KNN, and SVC models. The future scope involves implementing transfer learning and advanced deep learning modules to enhance prediction capabilities. While the current study focuses on India, the objective is to expand its scope to encompass global coverage.
Related papers
- Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.
A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.
The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Convolutional Neural Networks for Predictive Modeling of Lung Disease [34.1086022278394]
Pro-HRnet-CNN is an innovative model combining HRNet and void-convolution techniques.
Compared with the traditional ResNet-50, Pro-HRnet-CNN showed better performance in the feature extraction and recognition of small-size nodules.
arXiv Detail & Related papers (2024-08-08T01:58:46Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - Deep learning in computed tomography pulmonary angiography imaging: a
dual-pronged approach for pulmonary embolism detection [0.0]
The aim of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of Pulmonary Embolism (PE)
Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism.
AG-CNN achieves robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture.
arXiv Detail & Related papers (2023-11-09T08:23:44Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - An Adaptive and Altruistic PSO-based Deep Feature Selection Method for
Pneumonia Detection from Chest X-Rays [28.656853454251426]
Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of the world.
Computer-aided based diagnosis (CAD) systems can be used in such countries due to their lower operating costs than professional medical experts.
We propose a CAD system for Pneumonia detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm.
arXiv Detail & Related papers (2022-08-06T18:20:50Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A Novel CMAQ-CNN Hybrid Model to Forecast Hourly Surface-Ozone
Concentrations Fourteen Days in Advance [0.19573380763700707]
Currently available numerical modeling systems for air quality predictions can forecast 24 to 48 hours in advance.
We develop a modeling system based on a convolutional neural network (CNN) model that is not only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 255 stations.
Although the primary purpose of this study is the prediction of hourly ozone concentrations, the system can be extended to various other pollutants.
arXiv Detail & Related papers (2020-08-13T16:02:05Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.