論文の概要: Breast Histopathology Image Retrieval by Attention-based Adversarially Regularized Variational Graph Autoencoder with Contrastive Learning-Based Feature Extraction
- arxiv url: http://arxiv.org/abs/2405.04211v2
- Date: Mon, 10 Jun 2024 08:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:04:39.304282
- Title: Breast Histopathology Image Retrieval by Attention-based Adversarially Regularized Variational Graph Autoencoder with Contrastive Learning-Based Feature Extraction
- Title(参考訳): コントラスト学習に基づく特徴抽出を用いたアテンションベース逆正則変分グラフオートエンコーダによる乳腺病理像検索
- Authors: Nematollah Saeidi, Hossein Karshenas, Bijan Shoushtarian, Sepideh Hatamikia, Ramona Woitek, Amirreza Mahbod,
- Abstract要約: 本研究は,乳房組織像検索のための新しいアテンションベース逆正則変分グラフオートエンコーダモデルを提案する。
乳がん組織像の2つの公開データセットを用いて,提案モデルの性能評価を行った。
- 参考スコア(独自算出の注目度): 1.48419209885019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is the most common cancer type in women worldwide. Early detection and appropriate treatment can significantly reduce its impact. While histopathology examinations play a vital role in rapid and accurate diagnosis, they often require a substantial workforce and experienced medical experts for proper recognition and cancer grading. Automated image retrieval systems have the potential to assist pathologists in identifying cancerous tissues, thereby accelerating the diagnostic process. Nevertheless, due to considerable variability among the tissue and cell patterns in histological images, proposing an accurate image retrieval model is very challenging. This work introduces a novel attention-based adversarially regularized variational graph autoencoder model for breast histological image retrieval. Additionally, we incorporated cluster-guided contrastive learning as the graph feature extractor to boost the retrieval performance. We evaluated the performance of the proposed model on two publicly available datasets of breast cancer histological images and achieved superior or very competitive retrieval performance, with average mAP scores of 96.5% for the BreakHis dataset and 94.7% for the BACH dataset, and mVP scores of 91.9% and 91.3%, respectively. Our proposed retrieval model has the potential to be used in clinical settings to enhance diagnostic performance and ultimately benefit patients.
- Abstract(参考訳): 乳がんは世界でも最も多いがんである。
早期発見と適切な治療は、その影響を著しく減少させる。
病理組織学的検査は、迅速かつ正確な診断において重要な役割を担っているが、適切な認識とがんのグレーディングのために、かなりの労働力と経験豊富な医療専門家を必要としていることが多い。
自動画像検索システムは、病理学者ががん組織を同定するのを補助し、診断プロセスを加速する可能性がある。
しかし, 組織像と細胞像の相違により, 正確な画像検索モデルの提案は非常に困難である。
本研究は,乳房組織像検索のための新しいアテンションベース逆正則変分グラフオートエンコーダモデルを提案する。
さらに,クラスタ誘導型コントラスト学習をグラフ特徴抽出器として組み込んで検索性能を向上した。
乳がん組織像の2つの公開データセットにおけるモデルの有効性を評価し,BreakHisデータセットでは平均mAPスコア96.5%,BACHデータセットでは94.7%,mVPスコア91.9%,91.3%の成績を示した。
提案した検索モデルは,臨床現場で診断性能を高め,最終的には患者に利益をもたらす可能性がある。
関連論文リスト
- A Foundational Generative Model for Breast Ultrasound Image Analysis [42.618964727896156]
基礎モデルは臨床現場で様々な課題に対処するための強力なツールとして登場した。
乳房超音波検査に特化して設計された最初の基礎的生成モデルであるBUSGenについて述べる。
BUSGenは、数ショットの適応で、現実的で情報に富んだタスク固有のデータのリポジトリを生成することができる。
論文 参考訳(メタデータ) (2025-01-12T16:39:13Z) - MRANet: A Modified Residual Attention Networks for Lung and Colon Cancer Classification [0.0]
肺癌と大腸癌は、がんの死亡率に大きく寄与する。
異なる画像検出に画像技術を活用することで、学習モデルは癌分類の自動化において有望であることが示されている。
改良された注意ネットワークアーキテクチャに基づく新しいアプローチを提案する。
提案モデルの精度は99.30%,96.63%,97.56%であった。
論文 参考訳(メタデータ) (2024-12-23T16:31:45Z) - Histopathologic Cancer Detection [0.0]
この作業では、PatchCamelyonベンチマークデータセットを使用して、モデルをマルチレイヤのパーセプトロンと畳み込みモデルでトレーニングし、精度の高いリコール、F1スコア、精度、AUCスコアでモデルのパフォーマンスを観察する。
また,データ拡張を伴うResNet50とInceptionNetモデルを導入し,ResNet50が最先端モデルに勝てることを示す。
論文 参考訳(メタデータ) (2023-11-13T19:51:46Z) - Certification of Deep Learning Models for Medical Image Segmentation [44.177565298565966]
ランダムな平滑化と拡散モデルに基づく医用画像のための認定セグメンテーションベースラインを初めて提示する。
この結果から,拡散確率モデルをデノナイズするパワーを活用することで,ランダムな平滑化の限界を克服できることが示唆された。
論文 参考訳(メタデータ) (2023-10-05T16:40:33Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
本稿では,属性に基づく医用画像診断のためのハイブリッド型ニューロ確率推論アルゴリズムを提案する。
我々は,ハイブリッド推論アルゴリズムを2つの困難な画像診断タスクに適用することに成功している。
論文 参考訳(メタデータ) (2022-08-19T12:06:46Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。