Sensing Out-of-Equilibrium and Quantum Non-Gaussian environments via induced Time-Reversal Symmetry Breaking on the quantum-probe dynamics
- URL: http://arxiv.org/abs/2405.04742v1
- Date: Wed, 8 May 2024 01:13:07 GMT
- Title: Sensing Out-of-Equilibrium and Quantum Non-Gaussian environments via induced Time-Reversal Symmetry Breaking on the quantum-probe dynamics
- Authors: Martin Kuffer, Analía Zwick, Gonzalo A. Álvarez,
- Abstract summary: We prove that the time-reversal symmetry in the quantum-sensor control dynamics is broken, when partial information is probed from an environment that is out-of-equilibrium with non stationary fluctuations or is described by quantum non-Gaussian correlations.
This introduces a signal contrast on a qubit-probe that quantifies how far the sensed environment is from equilibrium or its quantum non-Gaussian nature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancing quantum sensing tools for investigating systems at atomic and nanoscales is crucial for the progress of quantum technologies. While numerous protocols employ quantum probes to extract information from stationary or weakly coupled environments, the challenges intensify at atomic- and nano-scales where the environment is inherently out-of-equilibrium or strongly coupled with the sensor. We here prove that the time-reversal symmetry in the quantum-sensor control dynamics is broken, when partial information is probed from an environment that is out-of-equilibrium with non stationary fluctuations or is described by quantum non-Gaussian, strongly coupled environmental correlations. We exploit this phenomenon as a quantum sensing paradigm with proof-of principle experimental quantum simulations using solid-state nuclear magnetic resonance (NMR). This introduces a signal contrast on a qubit-probe that quantifies how far the sensed environment is from equilibrium or its quantum non-Gaussian nature. Protocols are also presented to discern and filter a variety of environmental properties including stationary, non-stationary and non-Gaussian quantum noise fluctuations as a step toward sensing the ubiquitous environments of a quantum-sensor at atomic and nanoscales.
Related papers
- On the non-Markovian quantum control dynamics [2.0552363908639624]
We study open-loop control and closed-loop measurement feedback control of non-Markovian quantum dynamics.
We use the widely studied quantum cavity electrodynamics (cavity-QED) system as an example.
arXiv Detail & Related papers (2024-08-19T01:47:32Z) - Open system approach to Neutrino oscillations in a quantum walk
framework [3.0715281567279153]
We study the problem of simulating neutrino oscillation from the perspective of open quantum systems.
We establish a connection between the dynamics of reduced coin state and neutrino phenomenology.
We have also studied the behavior of linear entropy as a measure of entanglement between different flavors in the same framework.
arXiv Detail & Related papers (2023-05-23T10:51:08Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Self-consistent noise characterization of quantum devices [0.0]
We develop an approach to reduce the quantum environment causing single-qubit dephasing to a simple yet predictive noise model.
We demonstrate the power and limits of our approach by characterizing, with nanoscale spatial resolution, the noise experienced by two electronic spins in diamond.
arXiv Detail & Related papers (2022-10-17T19:10:56Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Path integral framework for characterizing and controlling decoherence
induced by non-stationary environments on a quantum probe [0.0]
We introduce a framework to characterize non-stationary environmental fluctuations by a quantum probe.
We show physical insights for a broad subclass of non-stationary noises that are local-in-time.
arXiv Detail & Related papers (2022-03-09T21:47:16Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.