論文の概要: Critical Infrastructure Protection: Generative AI, Challenges, and Opportunities
- arxiv url: http://arxiv.org/abs/2405.04874v1
- Date: Wed, 8 May 2024 08:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:04:15.607662
- Title: Critical Infrastructure Protection: Generative AI, Challenges, and Opportunities
- Title(参考訳): 重要なインフラストラクチャ保護 - 生成AI、課題、機会
- Authors: Yagmur Yigit, Mohamed Amine Ferrag, Iqbal H. Sarker, Leandros A. Maglaras, Christos Chrysoulas, Naghmeh Moradpoor, Helge Janicke,
- Abstract要約: クリティカル・ナショナル・インフラストラクチャー(CNI)は、社会と経済の運営に不可欠な国家の基本資産を包含している。
これらのインフラを標的とするサイバーセキュリティの脅威が拡大すると、作戦に干渉し、国家の安全と公共の安全を危うくする可能性がある。
我々は、サイバーセキュリティのリスクが重要なインフラにもたらす複雑な問題を調査し、異なるタイプのサイバー攻撃に対するシステムの脆弱性を強調した。
- 参考スコア(独自算出の注目度): 3.447031974719732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical National Infrastructure (CNI) encompasses a nation's essential assets that are fundamental to the operation of society and the economy, ensuring the provision of vital utilities such as energy, water, transportation, and communication. Nevertheless, growing cybersecurity threats targeting these infrastructures can potentially interfere with operations and seriously risk national security and public safety. In this paper, we examine the intricate issues raised by cybersecurity risks to vital infrastructure, highlighting these systems' vulnerability to different types of cyberattacks. We analyse the significance of trust, privacy, and resilience for Critical Infrastructure Protection (CIP), examining the diverse standards and regulations to manage these domains. We also scrutinise the co-analysis of safety and security, offering innovative approaches for their integration and emphasising the interdependence between these fields. Furthermore, we introduce a comprehensive method for CIP leveraging Generative AI and Large Language Models (LLMs), giving a tailored lifecycle and discussing specific applications across different critical infrastructure sectors. Lastly, we discuss potential future directions that promise to enhance the security and resilience of critical infrastructures. This paper proposes innovative strategies for CIP from evolving attacks and enhances comprehension of cybersecurity concerns related to critical infrastructure.
- Abstract(参考訳): クリティカル・ナショナル・インフラストラクチャー(CNI)は、社会と経済の運営に不可欠な国家の基本資産を包含し、エネルギー、水、交通、通信といった重要な公共事業の供給を確実にする。
それでも、これらのインフラを標的とするサイバーセキュリティの脅威は、作戦に干渉し、国家の安全と公共の安全を危険に晒す可能性がある。
本稿では,サイバーセキュリティのリスクが重要なインフラにもたらす複雑な問題について検討し,様々なタイプのサイバー攻撃に対するシステムの脆弱性を浮き彫りにする。
我々は、これらのドメインを管理するための様々な標準と規制について検討し、CIP(Critical Infrastructure Protection)における信頼、プライバシ、レジリエンスの重要性を分析します。
我々はまた、安全とセキュリティの共存分析を精査し、それらの統合のための革新的なアプローチを提供し、これらの分野間の相互依存を強調します。
さらに,ジェネレーティブAIとLarge Language Models(LLMs)を活用したCIPの包括的手法を導入する。
最後に、重要なインフラのセキュリティとレジリエンスを強化することを約束する将来的な方向性について議論する。
本稿では,攻撃の進展からCIPの革新的な戦略を提案し,重要なインフラに関するサイバーセキュリティの理解を深める。
関連論文リスト
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Critical Infrastructure Security: Penetration Testing and Exploit Development Perspectives [0.0]
本稿では,重要なインフラのセキュリティに関する文献をレビューし,浸透試験と活用開発に焦点をあてる。
この論文の発見は、重要なインフラや、サイバー敵による高度な脅威に固有の脆弱性を明らかにしている。
このレビューは、継続的かつ積極的なセキュリティアセスメントの必要性を強調している。
論文 参考訳(メタデータ) (2024-07-24T13:17:07Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
AIベースのサイバーセキュリティの重要な領域は、悪意のある摂動からディープニューラルネットワークを守ることに焦点を当てている。
VeriGauge ツールキットを用いて,認証されたロバスト性に関する先行研究の結果の検証を試みる。
私たちの発見は、標準化された方法論、コンテナ化、包括的なドキュメントの緊急性の必要性を浮き彫りにしています。
論文 参考訳(メタデータ) (2024-05-29T04:37:19Z) - A Value Driven Framework for Cybersecurity Innovation in Transportation & Infrastructure [0.0]
本稿では,交通・インフラ分野を対象とした価値駆動型サイバーセキュリティイノベーションフレームワークを提案する。
我々は、組織内で自己革新の文化を育むことを目指しており、サイバーセキュリティ対策に戦略的に焦点をあてることを可能にしている。
論文 参考訳(メタデータ) (2024-05-12T18:45:11Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
ソフトウェアベースのオープン無線アクセスネットワーク(RAN)システムのセキュリティへの影響について検討する。
我々は、Near Real-Time RAN Controller(RIC)クラスタをサポートするインフラストラクチャに潜在的な脆弱性と設定ミスがあることを強調します。
論文 参考訳(メタデータ) (2024-05-03T07:18:45Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
この分析は、量子コンピューティングが重要なインフラストラクチャとクラウドサービスに与える影響を探求する。
我々は、量子耐性暗号の開発と実装のために、積極的なセキュリティ戦略とセクター間の協力を提唱する。
この青写真は、量子的に引き起こされる潜在的なサイバー脅威に対する各地域の防御を強化する。
論文 参考訳(メタデータ) (2024-04-16T15:36:23Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - The Opportunity to Regulate Cybersecurity in the EU (and the World):
Recommendations for the Cybersecurity Resilience Act [1.2691047660244335]
ほとんどの状況で安全はサイバーセキュリティになりつつある。
これは、欧州連合で提案され、合意された時に、サイバーセキュリティ回復法に反映されるべきである。
これは、長い間サイバーセキュリティ研究コミュニティが求めてきたこと、そしてソフトではなく明確な厳格な法的ルールを構成するものに基づいている。
論文 参考訳(メタデータ) (2022-05-26T07:20:44Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。