論文の概要: KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation
- arxiv url: http://arxiv.org/abs/2405.05329v2
- Date: Mon, 13 May 2024 18:32:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 18:22:42.290046
- Title: KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation
- Title(参考訳): KV-Runahead:並列キー値キャッシュ生成によるスケーラブル因果LLM推論
- Authors: Minsik Cho, Mohammad Rastegari, Devang Naik,
- Abstract要約: 大規模言語モデル(LLM)推論は、プロンプト(またはプリフィル)フェーズと拡張(またはデコード)フェーズの2つのフェーズを持つ。
本稿では,プロンプト位相を高速化する効率的な並列化手法KV-Runaheadを提案する。
我々は、KV-RunaheadがそれぞれLlama 7BとFalcon 7Bの1.4倍と1.6倍のスピードアップを提供できることを示した。
- 参考スコア(独自算出の注目度): 20.98447775598288
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Model or LLM inference has two phases, the prompt (or prefill) phase to output the first token and the extension (or decoding) phase to the generate subsequent tokens. In this work, we propose an efficient parallelization scheme, KV-Runahead to accelerate the prompt phase. The key observation is that the extension phase generates tokens faster than the prompt phase because of key-value cache (KV-cache). Hence, KV-Runahead parallelizes the prompt phase by orchestrating multiple processes to populate the KV-cache and minimizes the time-to-first-token (TTFT). Dual-purposing the KV-cache scheme has two main benefits. First, since KV-cache is designed to leverage the causal attention map, we minimize computation and computation automatically. Second, since it already exists for the extension phase, KV-Runahead is easy to implement. We further propose context-level load-balancing to handle uneven KV-cache generation (due to the causal attention) and to optimize TTFT. Compared with an existing parallelization scheme such as tensor or sequential parallelization where keys and values are locally generated and exchanged via all-gather collectives, our experimental results demonstrate that KV-Runahead can offer over 1.4x and 1.6x speedups for Llama 7B and Falcon 7B respectively.
- Abstract(参考訳): 大規模言語モデル(LLM)推論は、最初のトークンを出力するプロンプト(またはプリフィル)フェーズと、後続のトークンを生成する拡張(またはデコード)フェーズの2つのフェーズを持つ。
本研究では,高速な並列化手法KV-Runaheadを提案する。
鍵となる観察は、キー値キャッシュ(KV-cache)のため、拡張フェーズがプロンプトフェーズよりも早くトークンを生成することである。
したがって、KV-Runaheadは、複数のプロセスを編成してKV-cacheを発生させ、TTFT(time-to-first-token)を最小化することにより、プロンプトフェーズを並列化する。
KV-cache方式は2つの大きな利点がある。
まず、KV-cacheは因果注意マップを利用するように設計されているので、計算と計算を自動的に最小化する。
第二に、すでに拡張フェーズに存在しているため、KV-Runaheadの実装が容易である。
さらに、(因果注意による)不均一なKVキャッシュ生成を処理し、TTFTを最適化するために、コンテキストレベルの負荷分散を提案する。
テンソルやシーケンシャル並列化のような既存の並列化方式と比較して、KV-RunaheadはLlama 7BとFalcon 7Bでそれぞれ1.4倍、1.6倍のスピードアップを提供できることを示した。
関連論文リスト
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - Effectively Compress KV Heads for LLM [28.0801697946958]
キーバリュー(KV)キャッシュを圧縮する新しい手法を提案する。
提案手法は,従来のLLMに匹敵する性能を維持しつつ,KVヘッドの4分の1以上を圧縮することができる。
論文 参考訳(メタデータ) (2024-06-11T08:37:33Z) - LoCoCo: Dropping In Convolutions for Long Context Compression [77.26610232994508]
本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
論文 参考訳(メタデータ) (2024-06-08T01:35:11Z) - DeFT: Decoding with Flash Tree-attention for Efficient Tree-structured LLM Inference [22.684773338989007]
大規模言語モデル(LLM)は、トークンの共有プレフィックスを持つツリー構造において、複数の世代呼び出しを処理する複雑なタスクにますます採用されている。
木に基づくアプリケーションの既存の推論システムは、注意計算中にクエリとKVキャッシュの不適切なパーティショニングのために非効率である。
我々は,プレフィックス認識と負荷分散KVキャッシュパーティションを用いたハードウェア効率の高いアテンションアルゴリズムであるDeFTを提案する。
論文 参考訳(メタデータ) (2024-03-30T04:34:54Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
キーフォーマー」は、KVキャッシュサイズとメモリ帯域幅利用に関する課題を軽減する革新的な推論時アプローチである。
我々はKeyformerの性能を,GPT-J,Cerebras-GPT,MPTの3つの基礎モデルで評価した。
論文 参考訳(メタデータ) (2024-03-14T02:42:42Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。