論文の概要: Latent Variable Double Gaussian Process Model for Decoding Complex Neural Data
- arxiv url: http://arxiv.org/abs/2405.05424v1
- Date: Wed, 8 May 2024 20:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:42:14.335845
- Title: Latent Variable Double Gaussian Process Model for Decoding Complex Neural Data
- Title(参考訳): 複素ニューラルデータ復号のための潜時可変二重ガウス過程モデル
- Authors: Navid Ziaei, Joshua J. Stim, Melanie D. Goodman-Keiser, Scott Sponheim, Alik S. Widge, Sasoun Krikorian, Ali Yousefi,
- Abstract要約: ガウス過程(GP)のような非パラメトリックモデルは、複素データの解析において有望な結果を示す。
GPモデルに基づくニューラルデコーダモデルを提案する。
本稿では,このデコーダモデルの言語記憶実験データセットへの適用例を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-parametric models, such as Gaussian Processes (GP), show promising results in the analysis of complex data. Their applications in neuroscience data have recently gained traction. In this research, we introduce a novel neural decoder model built upon GP models. The core idea is that two GPs generate neural data and their associated labels using a set of low- dimensional latent variables. Under this modeling assumption, the latent variables represent the underlying manifold or essential features present in the neural data. When GPs are trained, the latent variable can be inferred from neural data to decode the labels with a high accuracy. We demonstrate an application of this decoder model in a verbal memory experiment dataset and show that the decoder accuracy in predicting stimulus significantly surpasses the state-of-the-art decoder models. The preceding performance of this model highlights the importance of utilizing non-parametric models in the analysis of neuroscience data.
- Abstract(参考訳): ガウス過程(GP)のような非パラメトリックモデルは、複素データの解析において有望な結果を示す。
神経科学データへの彼らの応用は、最近勢いを増している。
本研究では,GPモデルに基づくニューラルデコーダモデルを提案する。
中心となる考え方は、2つのGPが低次元潜在変数の集合を用いてニューラルデータとその関連ラベルを生成することである。
このモデリングの前提の下では、潜伏変数は、ニューラルネットワークに存在する基礎となる多様体や本質的な特徴を表す。
GPを訓練すると、潜伏変数をニューラルネットワークから推論してラベルを高精度に復号することができる。
本稿では,このデコーダモデルを言語記憶実験データセットに適用し,刺激予測におけるデコーダ精度が最先端デコーダモデルを大幅に上回っていることを示す。
このモデルの先行性能は、神経科学データ解析における非パラメトリックモデルの利用の重要性を強調している。
関連論文リスト
- Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes [1.9544534628180867]
本稿では,条件付き生成モデリングの進歩を生かしたニューラルデータ解析手法を提案する。
我々は,高情報付きコードに基づくニューラル・オブザーバ生成と呼ばれるモデルを時系列ニューラル・データに適用する。
VAEベースのシーケンシャルオートエンコーダと比較して、GNOCCHIは、鍵となる振る舞い変数に関してより明確に構造化され、よりゆがみのある高品質な潜在空間を学習する。
論文 参考訳(メタデータ) (2024-07-30T21:07:09Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z) - Parametric Copula-GP model for analyzing multidimensional neuronal and
behavioral relationships [2.624902795082451]
本研究では,各変数の統計を依存構造から分離するパラメトリックコプラモデルを提案する。
連続タスク関連変数に条件付きコプラパラメータにガウス過程(GP)を優先したベイズフレームワークを用いる。
本フレームワークは神経,感覚,行動データ間の複雑な多次元的関係の解析に特に有用である。
論文 参考訳(メタデータ) (2020-08-03T16:44:29Z) - Deep Latent-Variable Kernel Learning [25.356503463916816]
本稿では,潜在変数が正規化表現の符号化を行う完全潜時可変カーネル学習(DLVKL)モデルを提案する。
実験により、DLVKL-NSDEは、小さなデータセット上でよく校正されたGPと同様に動作し、大きなデータセット上で既存のディープGPより優れていることが示された。
論文 参考訳(メタデータ) (2020-05-18T05:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。