論文の概要: PLLM-CS: Pre-trained Large Language Model (LLM) for Cyber Threat Detection in Satellite Networks
- arxiv url: http://arxiv.org/abs/2405.05469v1
- Date: Thu, 9 May 2024 00:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:32:26.001152
- Title: PLLM-CS: Pre-trained Large Language Model (LLM) for Cyber Threat Detection in Satellite Networks
- Title(参考訳): PLLM-CS:衛星ネットワークにおけるサイバー脅威検出のための学習済み大言語モデル(LLM)
- Authors: Mohammed Hassanin, Marwa Keshk, Sara Salim, Majid Alsubaie, Dharmendra Sharma,
- Abstract要約: 衛星ネットワークは、様々な重要なインフラのための通信サービスを促進する上で不可欠である。
これらのシステムの一部は、効果的な侵入検知システムがないために脆弱である。
サイバーセキュリティのための事前学習型大規模言語モデルを提案する。
- 参考スコア(独自算出の注目度): 0.20971479389679332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite networks are vital in facilitating communication services for various critical infrastructures. These networks can seamlessly integrate with a diverse array of systems. However, some of these systems are vulnerable due to the absence of effective intrusion detection systems, which can be attributed to limited research and the high costs associated with deploying, fine-tuning, monitoring, and responding to security breaches. To address these challenges, we propose a pretrained Large Language Model for Cyber Security , for short PLLM-CS, which is a variant of pre-trained Transformers [1], which includes a specialized module for transforming network data into contextually suitable inputs. This transformation enables the proposed LLM to encode contextual information within the cyber data. To validate the efficacy of the proposed method, we conducted empirical experiments using two publicly available network datasets, UNSW_NB 15 and TON_IoT, both providing Internet of Things (IoT)-based traffic data. Our experiments demonstrate that proposed LLM method outperforms state-of-the-art techniques such as BiLSTM, GRU, and CNN. Notably, the PLLM-CS method achieves an outstanding accuracy level of 100% on the UNSW_NB 15 dataset, setting a new standard for benchmark performance in this domain.
- Abstract(参考訳): 衛星ネットワークは、様々な重要なインフラのための通信サービスを促進する上で不可欠である。
これらのネットワークは多様なシステムとシームレスに統合できる。
しかし、これらのシステムのいくつかは効果的な侵入検知システムがないために脆弱であり、これは限られた研究と、展開、微調整、監視、セキュリティ違反への応答に関連する高コストに起因する可能性がある。
これらの課題に対処するために,ネットワークデータをコンテキストに適した入力に変換する専用モジュールを含む,事前学習型トランスフォーマー[1]の変種であるPLLM-CSについて,事前学習型大規模サイバーセキュリティモデルを提案する。
この変換により、提案したLLMは、サイバーデータ内のコンテキスト情報をエンコードすることができる。
提案手法の有効性を検証するため,2つの公開ネットワークデータセットUNSW_NB 15とTON_IoTを用いた実証実験を行った。
実験の結果,提案手法はBiLSTM, GRU, CNNなどの最先端技術よりも優れていた。
特に、PLLM-CS法はUNSW_NB 15データセットで100%の精度を達成し、この領域でベンチマーク性能の新たな標準を設定する。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey [0.3108011671896571]
本稿では,サイバー脅威検出システムにおけるトランスフォーマーとLCMの利用状況について,包括的分析を行った。
様々なサイバー攻撃の背景情報や、この分野でよく使われるデータセットなど、トランスフォーマーの基本について論じる。
コンピュータネットワーク、IoTデバイス、重要なインフラストラクチャ保護、クラウドコンピューティング、SDN、自動運転車など、TransformerとLLMベースのIDSが実装されているさまざまな環境とアプリケーションについて検討している。
論文 参考訳(メタデータ) (2024-08-14T14:28:11Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
統合衛星、航空、地上ネットワーク(ISATN)は多様な通信技術の洗練された収束を表現している。
本稿では,Large Language Models (LLM) を ISATN に統合するトランスフォーメーションの可能性について検討する。
論文 参考訳(メタデータ) (2024-07-05T15:23:43Z) - A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications [0.0]
デジタル変電所におけるサイバーセキュリティ侵害は、電力系統の運用の安定性と信頼性に重大な課題をもたらす。
本稿では,マルチキャストメッセージのデータセットにおける異常検出(AD)のためのタスク指向対話システムを提案する。
潜在的なエラーが低く、人間の推奨するサイバーセキュリティガイドラインを考えるプロセスよりもスケーラビリティと適応性が向上します。
論文 参考訳(メタデータ) (2024-06-08T13:28:50Z) - Novel Approach to Intrusion Detection: Introducing GAN-MSCNN-BILSTM with LIME Predictions [0.0]
本稿では、GAN(Generative Adversarial Networks)、MSCNN(Multi-Scale Convolutional Neural Networks)、Bidirectional Long Short-Term Memory(BiLSTM)を利用した革新的な侵入検知システムを提案する。
このシステムは、通常のパターンと攻撃パターンの両方を含む、現実的なネットワークトラフィックデータを生成する。
標準ベンチマークであるHogzillaデータセットの評価では、多クラス分類では99.16%、バイナリ分類では99.10%という印象的な精度を示している。
論文 参考訳(メタデータ) (2024-06-08T11:26:44Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
本稿では,Large AI Model-based Multimodal SC (LAMMSC) フレームワークを提案する。
まず、条件付きマルチモーダルアライメント(MMA)を提案し、マルチモーダルデータと非モーダルデータ間の変換を可能にする。
次に、パーソナライズされたLLMベースの知識ベース(LKB)を提案し、ユーザがパーソナライズされたセマンティック抽出やリカバリを行うことができる。
最後に,CGE(Generative Adversarial Network-based Channel Estimation)を用いて,無線チャネルの状態情報を推定する。
論文 参考訳(メタデータ) (2023-09-03T19:24:34Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Semi-Supervised Few-Shot Intent Classification and Slot Filling [3.602651625446309]
インテント分類(IC)とスロットフィリング(SF)は、現代の自然言語理解(NLU)システムにおける2つの基本的なタスクである。
本研究では,既存の教師付きメタ学習パイプラインに対して,コントラスト学習と教師なしデータ拡張がどのような効果をもたらすかを検討する。
論文 参考訳(メタデータ) (2021-09-17T20:26:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。