Achieving millisecond coherence fluxonium through overlap Josephson junctions
- URL: http://arxiv.org/abs/2405.05481v1
- Date: Thu, 9 May 2024 00:41:34 GMT
- Title: Achieving millisecond coherence fluxonium through overlap Josephson junctions
- Authors: Fei Wang, Kannan Lu, Huijuan Zhan, Lu Ma, Feng Wu, Hantao Sun, Hao Deng, Yang Bai, Feng Bao, Xu Chang, Ran Gao, Xun Gao, Guicheng Gong, Lijuan Hu, Ruizi Hu, Honghong Ji, Xizheng Ma, Liyong Mao, Zhijun Song, Chengchun Tang, Hongcheng Wang, Tenghui Wang, Ziang Wang, Tian Xia, Hongxin Xu, Ze Zhan, Gengyan Zhang, Tao Zhou, Mengyu Zhu, Qingbin Zhu, Shasha Zhu, Xing Zhu, Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng,
- Abstract summary: We introduce an overlap process for Josephson junction fabrication that achieves nearly 100% yield and maintains uniformity across a 2-inch wafer.
This work suggests the scalability of high coherence fluxonium processors using CMOS-compatible processes, marking a significant step towards practical quantum computing.
- Score: 29.75774681877928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting loop. However, this complexity poses significant fabrication challenges, particularly in achieving high yield and junction uniformity with traditional methods. Here, we introduce an overlap process for Josephson junction fabrication that achieves nearly 100% yield and maintains uniformity across a 2-inch wafer with less than 5% variation for the phase slip junction and less than 2% for the junction array. Our compact junction array design facilitates fluxonium qubits with energy relaxation times exceeding 1 millisecond at the flux frustration point, demonstrating consistency with state-of-the-art dielectric loss tangents and flux noise across multiple devices. This work suggests the scalability of high coherence fluxonium processors using CMOS-compatible processes, marking a significant step towards practical quantum computing.
Related papers
- Verifying the analogy between transversely coupled spin-1/2 systems and inductively-coupled fluxoniums [2.5586221134859426]
We report a detailed characterization of two inductively coupled superconducting fluxonium qubits.
Our circuit behaves very closely to the case of two transversely coupled spin-1/2 systems.
arXiv Detail & Related papers (2024-07-22T08:07:35Z) - Discriminating the Phase of a Coherent Tone with a Flux-Switchable
Superconducting Circuit [50.591267188664666]
We propose a new phase detection technique based on a flux-switchable superconducting circuit.
The Josephson digital phase detector (JDPD) is capable of discriminating between two phase values of a coherent input tone.
arXiv Detail & Related papers (2023-06-20T08:09:37Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Path toward manufacturable superconducting qubits with relaxation times
exceeding 0.1 ms [0.0]
We show that a subtractive etch process results in qubits with average qubit energy relaxation times T1 reaching 70 $mu$s, with maximum values exceeding 100 $mu$s.
The presented fabrication process heralds an important milestone towards a manufacturable 300 mm CMOS process for high-coherence superconducting qubits.
arXiv Detail & Related papers (2022-02-21T15:28:06Z) - Tunable coupling scheme for implementing two-qubit gates on fluxonium
qubits [0.0]
The superconducting fluxonium circuit is an RF-SQUID-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material.
In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states.
We propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum.
arXiv Detail & Related papers (2021-07-24T07:21:01Z) - Geometric superinductance qubits: Controlling phase delocalization
across a single Josephson junction [0.0]
We present a large variety of qubits all stemming from the same circuit but with drastically different characteristic energy scales.
The use of a geometric inductor results in high precision of the inductive and capacitive energy as guaranteed by top-down lithography.
arXiv Detail & Related papers (2021-06-10T16:09:36Z) - In-situ bandaged Josephson junctions for superconducting quantum
processors [101.18253437732933]
Shadow evaporation is commonly used to micro-fabricate the key element of superconducting qubits - the Josephson junction.
Here, we present an improved shadow evaporation technique allowing one to fabricate sub-micrometer-sized Josephson junctions together with bandage layers in a single lithography step.
arXiv Detail & Related papers (2021-01-05T11:08:09Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.