論文の概要: Beyond Prompts: Learning from Human Communication for Enhanced AI Intent Alignment
- arxiv url: http://arxiv.org/abs/2405.05678v1
- Date: Thu, 9 May 2024 11:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:42:37.602063
- Title: Beyond Prompts: Learning from Human Communication for Enhanced AI Intent Alignment
- Title(参考訳): プロンプトを超えて - 強化されたAIインテントアライメントのためのヒューマンコミュニケーションから学ぶ
- Authors: Yoonsu Kim, Kihoon Son, Seoyoung Kim, Juho Kim,
- Abstract要約: 人間のコミュニケーションにおける意図的仕様のための人的戦略について検討する。
本研究は,人間中心型AIシステムに向けて,AIシステム設計のためのヒューマンコミュニケーション戦略をまとめることを目的としている。
- 参考スコア(独自算出の注目度): 30.93897332124916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI intent alignment, ensuring that AI produces outcomes as intended by users, is a critical challenge in human-AI interaction. The emergence of generative AI, including LLMs, has intensified the significance of this problem, as interactions increasingly involve users specifying desired results for AI systems. In order to support better AI intent alignment, we aim to explore human strategies for intent specification in human-human communication. By studying and comparing human-human and human-LLM communication, we identify key strategies that can be applied to the design of AI systems that are more effective at understanding and aligning with user intent. This study aims to advance toward a human-centered AI system by bringing together human communication strategies for the design of AI systems.
- Abstract(参考訳): AIインテントアライメントは、AIがユーザによって意図された結果を生み出すことを保証するもので、人間とAIのインタラクションにおいて重要な課題である。
LLMを含むジェネレーティブAIの出現は、AIシステムに望ましい結果を指定するユーザの増加に伴い、この問題の重要性を高めている。
より優れたAIインテントアライメントを支援するため、人間と人間のコミュニケーションにおけるインテント仕様のためのヒューマン戦略を探究する。
人-人-LLMコミュニケーションを研究・比較することにより、ユーザ意図の理解と整合性がより効果的であるAIシステムの設計に適用可能な重要な戦略を特定する。
本研究は,人間中心型AIシステムに向けて,AIシステム設計のためのヒューマンコミュニケーション戦略をまとめることを目的としている。
関連論文リスト
- Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
現在の大きな成功にもかかわらず、ディープラーニングベースのAIシステムは、微妙な敵対的ノイズによって容易に騙されることを示した。
骨格に基づくヒトの相互作用のケーススタディに基づき、相互作用に対する新しい敵対的攻撃を提案する。
本研究では、安全クリティカルなアプリケーションにAIシステムをデプロイする際に慎重に対処する必要があるAIと人間との相互作用ループにおける潜在的なリスクを強調します。
論文 参考訳(メタデータ) (2021-01-17T16:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。