論文の概要: DREAMS: Density Functional Theory Based Research Engine for Agentic Materials Simulation
- arxiv url: http://arxiv.org/abs/2507.14267v1
- Date: Fri, 18 Jul 2025 15:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.814141
- Title: DREAMS: Density Functional Theory Based Research Engine for Agentic Materials Simulation
- Title(参考訳): DREAMS: エージェント材料シミュレーションのための密度汎関数理論に基づく研究エンジン
- Authors: Ziqi Wang, Hongshuo Huang, Hancheng Zhao, Changwen Xu, Shang Zhu, Jan Janssen, Venkatasubramanian Viswanathan,
- Abstract要約: エージェント材料スクリーニングのためのDFTベースリサーチエンジン(DREAMS)について紹介する。
DREAMSはDFTシミュレーションのための階層的マルチエージェントフレームワークであり、LLM(Central Large Language Model)プランナーエージェントとドメイン固有のLLMエージェントを組み合わせたものである。
DREAMSをSol27LC格子定数ベンチマークで検証し,人間のDFT専門家と比較すると平均誤差を1%以下に抑えることができた。
- 参考スコア(独自算出の注目度): 1.3821435284269523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Materials discovery relies on high-throughput, high-fidelity simulation techniques such as Density Functional Theory (DFT), which require years of training, extensive parameter fine-tuning and systematic error handling. To address these challenges, we introduce the DFT-based Research Engine for Agentic Materials Screening (DREAMS), a hierarchical, multi-agent framework for DFT simulation that combines a central Large Language Model (LLM) planner agent with domain-specific LLM agents for atomistic structure generation, systematic DFT convergence testing, High-Performance Computing (HPC) scheduling, and error handling. In addition, a shared canvas helps the LLM agents to structure their discussions, preserve context and prevent hallucination. We validate DREAMS capabilities on the Sol27LC lattice-constant benchmark, achieving average errors below 1\% compared to the results of human DFT experts. Furthermore, we apply DREAMS to the long-standing CO/Pt(111) adsorption puzzle, demonstrating its long-term and complex problem-solving capabilities. The framework again reproduces expert-level literature adsorption-energy differences. Finally, DREAMS is employed to quantify functional-driven uncertainties with Bayesian ensemble sampling, confirming the Face Centered Cubic (FCC)-site preference at the Generalized Gradient Approximation (GGA) DFT level. In conclusion, DREAMS approaches L3-level automation - autonomous exploration of a defined design space - and significantly reduces the reliance on human expertise and intervention, offering a scalable path toward democratized, high-throughput, high-fidelity computational materials discovery.
- Abstract(参考訳): 材料発見は密度汎関数理論(DFT)のような高スループットで高忠実なシミュレーション技術に依存しており、これは長年の訓練、広範囲なパラメータの微調整、体系的なエラー処理を必要とする。
これらの課題に対処するために、DFTベースのエージェント材料スクリーニングのためのリサーチエンジンDREAMS(Research Engine for Agentic Materials Screening)を導入し、中央大言語モデル(LLM)プランナーエージェントとドメイン固有のLLMエージェントを組み合わせて、原子構造の生成、系統的DFT収束試験、ハイパフォーマンスコンピューティング(HPC)スケジューリング、エラー処理を行う。
加えて、共有キャンバスは、LLMエージェントが議論を構造化し、コンテキストを保存し、幻覚を防ぐのに役立つ。
DREAMSをSol27LC格子定数ベンチマークで検証し,人間のDFT専門家と比較すると平均誤差が1倍以下であることが確認された。
さらに,長期間のCO/Pt(111)吸着パズルに対してDREAMSを適用し,その長期かつ複雑な問題解決能力を示す。
この枠組みは、専門家レベルの吸着エネルギー差を再び再現する。
最後に、DREAMSを用いてベイズアンサンブルサンプリングによる機能駆動の不確かさの定量化を行い、一般化勾配近似(GGA)DFTレベルでの顔中心立方体(FCC)サイトの嗜好を確認した。
結論として、DREAMSはL3レベルの自動化 — 定義された設計空間の自律的な探索 — にアプローチし、人間の専門知識と介入への依存を著しく低減し、民主化され、高スループット、高忠実な計算材料発見へのスケーラブルなパスを提供する。
関連論文リスト
- Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
トレーニング後の完全なパイプラインを自律的に構築し、最適化するフレームワークであるLaMDAgentを紹介します。
LaMDAgentは、ツールの使用精度を9.0ポイント向上し、命令追従機能を保持する。
従来の人間主導の探査で見落とされがちな効果的なポストトレーニング戦略を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T04:30:51Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - FedMHO: Heterogeneous One-Shot Federated Learning Towards Resource-Constrained Edge Devices [12.08958206272527]
フェデレートラーニング(FL)はエッジコンピューティングのシナリオにおいてますます採用され、多くの異種クライアントが制約や十分なリソースの下で運用されている。
ワンショットFLは通信オーバーヘッドを軽減するための有望なアプローチとして登場し、モデルヘテロジニアスFLはクライアント間の多様なコンピューティングリソースの問題を解決する。
本稿では,リソースに制約のあるデバイス上で,リソースに十分なクライアントと軽量な生成モデルに対して,詳細な分類モデルを活用するFedMHOという新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-12T15:54:56Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Smurfs: Multi-Agent System using Context-Efficient DFSDT for Tool Planning [14.635361844362794]
Smurfsは、DFSDTをモジュール的で、文脈効率が高く、トレーニング不要な設計で強化する新しいマルチエージェントシステムである。
Smurfsは、オープンエンドのStableToolBenchとクローズドエンドのHotpotQAタスクのベースラインメソッドを上回っている。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Putting Density Functional Theory to the Test in
Machine-Learning-Accelerated Materials Discovery [2.7810723668216575]
従来のDFTベース機械学習(ML)で典型的なものを超える精度、効率、アプローチに必要な進歩について述べる。
DFTが高スループットのスクリーンで所定のデータポイントを信頼するには、一連のテストに合格しなければならない。
DFTが高スループットのスクリーンで所定のデータポイントを信頼するには、一連のテストに合格しなければならない。
論文 参考訳(メタデータ) (2022-05-06T00:34:50Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。