ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array
- URL: http://arxiv.org/abs/2411.14037v1
- Date: Thu, 21 Nov 2024 11:39:21 GMT
- Title: ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array
- Authors: Chen Huang, Xi Zhao, Hongze Xu, Weifeng Zhuang, Meng-Jun Hu, Dong E. Liu, Jingbo Wang,
- Abstract summary: We present a novel zoned architecture for neutral atom quantum compilation.
Our method achieves a 5.4x increase in fidelity when the system need 100 qubits.
- Score: 9.421018957499186
- License:
- Abstract: Neutral atom quantum computing platforms have gained significant attention due to their potential scalability and flexibility in qubit arrangement. In this work, we present a novel zoned architecture for neutral atom quantum compilation, which divides the system into distinct zones: a storage zone and an interaction zone. This architecture optimizes atom placement and interaction scheduling, effectively reducing the operation depth and improving parallelism during compilation. Through a tailored algorithmic approach, we significantly enhance the compilation efficiency and scalability compared to existing methods. Compared to the state-of-the-art Enola platform, our method achieves a 5.4x increase in fidelity when the system need 100 qubits, marking a pivotal advancement in neutral atom quantum computing. Our approach provides a robust framework for future large-scale quantum computations, ensuring both high fidelity and efficient execution.
Related papers
- PowerMove: Optimizing Compilation for Neutral Atom Quantum Computers with Zoned Architecture [15.027253937154006]
We present PowerMove, an efficient compiler for Neutral atom-based quantum computers (NAQCs)
By recognizing and leveraging the interdependencies between these key aspects, PowerMove unlocks new optimization opportunities.
Our evaluation demonstrates an improvement in fidelity by several orders of magnitude compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-11-19T06:22:57Z) - DasAtom: A Divide-and-Shuttle Atom Approach to Quantum Circuit Transformation [2.0861727452345766]
Neutral atom (NA) quantum systems are emerging as a leading platform for quantum computation.
DasAtom is a novel divide-and-shuttle atom approach designed to optimise quantum circuit transformation for NA devices.
DasAtom achieves a 414x improvement in fidelity over the move-based algorithm Enola and a 10.6x improvement over the SWAP-based algorithm Tetris.
arXiv Detail & Related papers (2024-09-05T02:23:32Z) - An Abstract Model and Efficient Routing for Logical Entangling Gates on Zoned Neutral Atom Architectures [4.306566710489809]
Recent achievements have demonstrated the potential of neutral atom architectures for fault-tolerant quantum computing.
This paper provides an abstract model of the novel architecture and an efficient solution to the routing problem of entangling gates.
In addition to that, we consider logical qubit arrays, each of which encodes one logical qubit.
arXiv Detail & Related papers (2024-05-13T18:00:01Z) - Arctic: A Field Programmable Quantum Array Scheduling Technique [0.0]
I present the first compiler pass designed to optimize reconfigurable coupling in zoned neutral atom architectures.
I approach qubit mapping and movement scheduling as a max-cut and layered cross-minimization problem.
I compare the method across various algorithms sourced from Supermarq and Qasmbench.
arXiv Detail & Related papers (2024-05-10T01:56:01Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
arXiv Detail & Related papers (2023-09-21T15:48:45Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Time-Sliced Quantum Circuit Partitioning for Modular Architectures [67.85032071273537]
Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
arXiv Detail & Related papers (2020-05-25T17:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.