論文の概要: Quantum Krylov-Subspace Method Based Linear Solver
- arxiv url: http://arxiv.org/abs/2405.06359v1
- Date: Fri, 10 May 2024 09:50:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:07:56.567292
- Title: Quantum Krylov-Subspace Method Based Linear Solver
- Title(参考訳): 量子クリロフ部分空間法に基づく線形解法
- Authors: Rui-Bin Xu, Zhu-Jun Zheng, Zheng Zheng,
- Abstract要約: 量子クリロフ部分空間法(Quantum Krylov-subspace method, QKSM)は、古典量子のハイブリッドアルゴリズムである。
本稿では,量子クリロフ部分空間法に基づく線形解法を提案する。
- 参考スコア(独自算出の注目度): 1.689689700250852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the successful enhancement to the Harrow-Hassidim-Lloyd algorithm by Childs et al., who introduced the Fourier approach leveraging linear combinations of unitary operators, our research has identified non-trivial redundancies within this method. This finding points to a considerable potential for refinement. In this paper, we propose the quantum Krylov-subspace method (QKSM), which is a hybrid classical-quantum algorithm, to mitigate such redundancies. By integrating QKSM as a subroutine, we introduce the quantum Krylov-subspace method based linear solver that not only reduces computational redundancy but also enhances efficiency and accuracy. Extensive numerical experiments, conducted on systems with dimensions up to $2^{10} \times 2^{10}$, have demonstrated a significant reduction in computational resources and have led to more precise approximations.
- Abstract(参考訳): 単項演算子の線形結合を利用したフーリエ法を導入したChildsらによるHarrow-Hassidim-Lloydアルゴリズムの強化は成功したが,本手法では非自明な冗長性が確認された。
この発見は、改良のかなりの可能性を示唆している。
本稿では,量子Krylov-subspace法(QKSM)を提案する。
QKSMをサブルーチンとして統合することにより、量子クリロフ部分空間法に基づく線形解法を導入し、計算冗長性を低減できるだけでなく、効率と精度も向上する。
次元が 2^{10} \times 2^{10}$ のシステムで大規模な数値実験が行われ、計算資源の大幅な削減が示され、より正確な近似が導かれた。
関連論文リスト
- Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm [47.7091447096969]
主な課題は、ユーザ機器(UE)からの限られたフィードバックから基地局(BS)のダウンリンクチャネル状態情報(CSI)を取得することである。
本稿では、UE側で圧縮とガウスディザリングに基づく量子化戦略を採用し、BS側で最大極大推定器(MLE)を定式化する単純なフィードバックフレームワークを提案する。
このアルゴリズムは、高次高調波探索(HR)ソルバをサブルーチンとして統合するために慎重に設計されており、この難しいMLE問題に効果的に取り組む鍵であることが判明した。
論文 参考訳(メタデータ) (2024-11-25T02:15:01Z) - Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
本稿では,このような大規模方程式系を高精度に解くことを目的とした量子方法論の探索について述べる。
2次元,過渡的,非圧縮的,粘性,非線形結合バーガース方程式をテスト問題とする。
我々の研究結果は、我々の量子法が従来の手法に匹敵する精度で結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-09-05T04:42:24Z) - Quantum-Trajectory-Inspired Lindbladian Simulation [15.006625290843187]
リンドブラディアンズが支配するオープン量子系の力学をシミュレーションする2つの量子アルゴリズムを提案する。
最初のアルゴリズムはジャンプ演算子数とは無関係にゲート複雑性を達成し、$m$は効率を大幅に向上させる。
第二のアルゴリズムは進化時間$t$と精度$epsilon$にほぼ最適に依存し、追加の$tildeO(m)$ factorを導入する。
論文 参考訳(メタデータ) (2024-08-20T03:08:27Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
本稿では,最近のアディバティック・インスパイアされたQLSAの進歩に基づく量子アルゴリズムを提案する。
実装の全体的な複雑さは、その次元において多対数的であることを厳密に示します。
論文 参考訳(メタデータ) (2024-03-28T20:37:32Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
我々は,必要アンザッツ深さの顕著な減少を数値的に示し,プレコンディショニングが量子アルゴリズムに有用であることを示す。
この結果から, プリコンディショニングなどの古典的計算手法と量子アルゴリズムを組み合わせることで, NISQアルゴリズムの性能を大幅に向上させることができることが示唆された。
論文 参考訳(メタデータ) (2023-12-25T08:50:22Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - A stochastic quantum Krylov protocol with double factorized Hamiltonians [0.0]
そこで,本研究では,量子リソース要求を適度に満たした固有状態推定問題を解くことができるランダム化量子クリロフ対角化(rQKD)アルゴリズムを提案する。
従来のリアルタイム進化量子Krylov部分空間法と比較して、我々は時間発展演算子 $e-ihatH tau$ をユニタリの線形結合として表現し、回路深さの要求を減少させるためにサンプリング手順を用いる。
論文 参考訳(メタデータ) (2022-11-15T16:27:41Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。