論文の概要: Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2405.06419v2
- Date: Sat, 24 Aug 2024 07:23:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:36:49.110874
- Title: Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
- Title(参考訳): Time Evidence Fusion Network: 長期連続予測におけるマルチソースビュー
- Authors: Tianxiang Zhan, Yuanpeng He, Yong Deng, Zhen Li,
- Abstract要約: 時系列予測には、特に大規模なデータセットを扱う場合、タイムラインが必要である。
本稿では情報融合の観点から新しいバックボーンを提案する。
モデルは性能、正確性、安定性、解釈可能性のバランスをとる。
- 参考スコア(独自算出の注目度): 10.733698311045181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical scenarios, time series forecasting necessitates timeliness, especially when dealing with large datasets. Consequently, the exploration of model architectures remains a perennially trending topic in research. To meet these performance demands, we propose a novel backbone from the perspective of information fusion. Introducing the Basic Probability Assignment (BPA) Module and the Time Evidence Fusion Network (TEFN), based on evidence theory, allows us to achieve superior performance. On the other hand, the perspective of multi-source information fusion effectively improves the accuracy of forecasting. Due to the fact that BPA is generated by fuzzy theory, TEFN also has considerable interpretability. In real data experiments, the TEFN partially achieved state-of-the-art, with low errors comparable to PatchTST, and operating efficiency surpass performance models such as Dlinear. Meanwhile, TEFN has high robustness and small error fluctuations in the random hyperparameter selection. TEFN is not a model that achieves the ultimate in single aspect, but a model that balances performance, accuracy, stability, and interpretability.
- Abstract(参考訳): 現実的なシナリオでは、特に大規模なデータセットを扱う場合、時系列予測がタイムラインを必要とする。
その結果、モデルアーキテクチャの探索は研究において年々話題となっている。
これらの性能要求を満たすため,情報融合の観点から新しいバックボーンを提案する。
The Basic Probability Assignment (BPA) Module and the Time Evidence Fusion Network (TEFN) のエビデンス理論に基づく導入により,優れた性能を実現することができる。
一方,マルチソース情報融合の視点は,予測精度を効果的に向上させる。
BPA がファジィ理論によって生成されるという事実から、EFN もかなり解釈可能である。
実際のデータ実験では、TEFNはPatchTSTに匹敵する低い誤差で最先端を部分的に達成し、Dlinearのような性能モデルを上回る動作効率を実現した。
一方、TEFNは、ランダムなハイパーパラメータ選択において、高いロバスト性および小さなエラー変動を有する。
TEFNは、単一面において究極のものを達成するモデルではなく、性能、正確性、安定性、解釈可能性のバランスをとるモデルである。
関連論文リスト
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
CNN,Long Short-Term Memory Network (LSTM), Gated Recurrent Units (GRU)を統合したハイブリッドアーキテクチャであるMulti-Channel Data Fusion Network (MCDFN)を紹介する。
我々の比較ベンチマークは、MCDFNが他の7つのディープラーニングモデルより優れていることを示している。
本研究は,需要予測手法を進歩させ,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-05-24T14:30:00Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
本研究では,表現表現を効率よく学習する新しい方法である,フーリエ変換(SPF)による状態列予測を提案する。
本研究では,状態系列における構造情報の存在を理論的に解析する。
実験により,提案手法はサンプル効率と性能の両面で,最先端のアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-24T14:47:02Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
時系列予測は、その広範な応用が本質的に困難なため、既存の研究から幅広い関心を集めている。
本稿では,まず,畳み込み操作を用いてマルチスケールの時系列パターンを適応的に分解し,パターン再現の既知に基づいてパターン拡張予測手法を構築し,最終的に畳み込み操作を用いて将来的なパターンを再構築する。
時系列に存在する時間的依存関係を活用することで、MPR-Netは線形時間複雑性を達成するだけでなく、予測プロセスも解釈できる。
論文 参考訳(メタデータ) (2023-07-13T13:16:01Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
短期負荷予測(STLF)は電力グリッドとエネルギー市場の効果的かつ経済的な運用に不可欠である。
STLFの文献ではいくつかのディープラーニングモデルが提案されており、有望な結果を報告している。
論文 参考訳(メタデータ) (2023-02-23T17:11:04Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。