Sparse Sampling is All You Need for Fast Wrong-way Cycling Detection in CCTV Videos
- URL: http://arxiv.org/abs/2405.07293v1
- Date: Sun, 12 May 2024 14:16:05 GMT
- Title: Sparse Sampling is All You Need for Fast Wrong-way Cycling Detection in CCTV Videos
- Authors: Jing Xu, Wentao Shi, Sheng Ren, Pan Gao, Peng Zhou, Jie Qin,
- Abstract summary: This paper formulates a problem of detecting wrong-way cycling ratios in CCTV videos.
We propose a sparse sampling method called WWC-Predictor to efficiently solve this problem.
Our approach achieves an average error rate of a mere 1.475% while taking only 19.12% GPU time.
- Score: 36.1376919510996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of transportation, it is of paramount importance to address and mitigate illegal actions committed by both motor and non-motor vehicles. Among those actions, wrong-way cycling (i.e., riding a bicycle or e-bike in the opposite direction of the designated traffic flow) poses significant risks to both cyclists and other road users. To this end, this paper formulates a problem of detecting wrong-way cycling ratios in CCTV videos. Specifically, we propose a sparse sampling method called WWC-Predictor to efficiently solve this problem, addressing the inefficiencies of direct tracking methods. Our approach leverages both detection-based information, which utilizes the information from bounding boxes, and orientation-based information, which provides insights into the image itself, to enhance instantaneous information capture capability. On our proposed benchmark dataset consisting of 35 minutes of video sequences and minute-level annotation, our method achieves an average error rate of a mere 1.475% while taking only 19.12% GPU time of straightforward tracking methods under the same detection model. This remarkable performance demonstrates the effectiveness of our approach in identifying and predicting instances of wrong-way cycling.
Related papers
- A Benchmark for Cycling Close Pass Near Miss Event Detection from Video
Streams [35.17510169229505]
We introduce a novel benchmark, called Cyc-CP, towards cycling close pass near miss event detection from video streams.
We propose two benchmark models based on deep learning techniques for these two problems.
Our models can achieve 88.13% and 84.60% accuracy on the real-world dataset.
arXiv Detail & Related papers (2023-04-24T07:30:01Z) - Online Lane Graph Extraction from Onboard Video [133.68032636906133]
We use the video stream from an onboard camera for online extraction of the surrounding's lane graph.
Using video, instead of a single image, as input poses both benefits and challenges in terms of combining the information from different timesteps.
A single model of this proposed simple, yet effective, method can process any number of images, including one, to produce accurate lane graphs.
arXiv Detail & Related papers (2023-04-03T12:36:39Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
arXiv Detail & Related papers (2022-10-17T21:22:41Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
arXiv Detail & Related papers (2022-04-27T13:10:48Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Cyclist Trajectory Forecasts by Incorporation of Multi-View Video
Information [2.984037222955095]
This article presents a novel approach to incorporate visual cues from video-data from a wide-angle stereo camera system mounted at an urban intersection into the forecast of cyclist trajectories.
We extract features from image and optical flow sequences using 3D convolutional neural networks (3D-ConvNet) and combine them with features extracted from the cyclist's past trajectory to forecast future cyclist positions.
arXiv Detail & Related papers (2021-06-30T11:34:43Z) - An Efficient Approach for Anomaly Detection in Traffic Videos [30.83924581439373]
We propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices.
The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames.
We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic.
arXiv Detail & Related papers (2021-04-20T04:43:18Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.