Fighter flight trajectory prediction based on spatio-temporal graphcial attention network
- URL: http://arxiv.org/abs/2405.08034v1
- Date: Mon, 13 May 2024 02:47:57 GMT
- Title: Fighter flight trajectory prediction based on spatio-temporal graphcial attention network
- Authors: Yao Sun, Tengyu Jing, Jiapeng Wang, Wei Wang,
- Abstract summary: This paper proposes a network-temporal graph attention (ST-GAT) using encoding and decoding structures to predict the flight trajectory.
The Transformer branch network is used to extract the characteristics of historical trajectories and capture the impact of the fighter's temporal state on future trajectories.
The GAT branch network is used to extract spatial features in historical trajectories and capture potential spatial correlations between fighters.
- Score: 8.938877973527779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quickly and accurately predicting the flight trajectory of a blue army fighter in close-range air combat helps a red army fighter gain a dominant situation, which is the winning factor in later air combat. However,due to the high speed and even hypersonic capabilities of advanced fighters, the diversity of tactical maneuvers,and the instantaneous nature of situational transitions,it is difficult to meet the requirements of practical combat applications in terms of prediction accuracy.To improve prediction accuracy,this paper proposes a spatio-temporal graph attention network (ST-GAT) using encoding and decoding structures to predict the flight trajectory. The encoder adopts a parallel structure of Transformer and GAT branches embedded with the multi-head self-attention mechanism in each front end. The Transformer branch network is used to extract the temporal characteristics of historical trajectories and capture the impact of the fighter's historical state on future trajectories, while the GAT branch network is used to extract spatial features in historical trajectories and capture potential spatial correlations between fighters.Then we concatenate the outputs of the two branches into a new feature vector and input it into a decoder composed of a fully connected network to predict the future position coordinates of the blue army fighter.The computer simulation results show that the proposed network significantly improves the prediction accuracy of flight trajectories compared to the enhanced CNN-LSTM network (ECNN-LSTM), with improvements of 47% and 34% in both ADE and FDE indicators,providing strong support for subsequent autonomous combat missions.
Related papers
- VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction [2.1825723033513165]
We propose a new trajectory prediction method using Gated Recurrent Units (GRUs) within sequence-based neural networks.
We employ both synthetic and real-world 3D UAV trajectory data, capturing a wide range of flight patterns, speeds, and agility.
The GRU-based models significantly outperform state-of-the-art RNN approaches, with a mean square error (MSE) as low as 2 x 10-8.
arXiv Detail & Related papers (2024-10-24T07:16:42Z) - Biologically Inspired Swarm Dynamic Target Tracking and Obstacle Avoidance [0.0]
This study proposes a novel artificial intelligence (AI) driven flight computer to track dynamic targets using a distributed drone swarm for military applications.
The controller integrates a fuzzy interface, a neural network enabling rapid adaption, predictive capability and multi-agent solving.
arXiv Detail & Related papers (2024-10-15T03:47:09Z) - Flight Trajectory Prediction Using an Enhanced CNN-LSTM Network [3.336247245655282]
This paper proposes an enhanced CNN-LSTM network as a fighter flight trajectory prediction method.
The proposed method improves the trajectory prediction accuracy compared to the original CNN-LSTM method, with the improvements of 32% and 34% in ADE and FDE indicators.
arXiv Detail & Related papers (2024-04-30T02:39:01Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Transformer based trajectory prediction [71.31516599226606]
We present a simple and yet strong baseline for uncertainty aware motion prediction based purely on transformer neural networks.
While being easy-to-implement, the proposed approach achieves competitive performance and ranks 1$st$ on the 2021 Shifts Vehicle Motion Prediction Competition.
arXiv Detail & Related papers (2021-12-08T16:00:14Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Graph-Based Spatial-Temporal Convolutional Network for Vehicle
Trajectory Prediction in Autonomous Driving [2.6774008509841005]
This paper proposes a graph-based spatial-temporal convolutional network ( GSTCN) to predict future trajectory distributions of all neighbor vehicles.
The spatial-temporal features are encoded and decoded by a gated recurrent unit (GRU) network to generate future trajectory distributions.
Our network is evaluated on two real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation Simulation (NGSIM)
arXiv Detail & Related papers (2021-09-27T02:20:38Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.