Neural Collapse Meets Differential Privacy: Curious Behaviors of NoisyGD with Near-perfect Representation Learning
- URL: http://arxiv.org/abs/2405.08920v2
- Date: Thu, 16 May 2024 12:06:03 GMT
- Title: Neural Collapse Meets Differential Privacy: Curious Behaviors of NoisyGD with Near-perfect Representation Learning
- Authors: Chendi Wang, Yuqing Zhu, Weijie J. Su, Yu-Xiang Wang,
- Abstract summary: We consider the setting of a layer-peeled model in representation learning, which results in interesting phenomena related to learned features in deep learning and transfer learning.
We show that DP fine-tuning is less robust compared to fine-tuning without DP, particularly in the presence of perturbations.
- Score: 36.954726737451224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent study by De et al. (2022) has reported that large-scale representation learning through pre-training on a public dataset significantly enhances differentially private (DP) learning in downstream tasks, despite the high dimensionality of the feature space. To theoretically explain this phenomenon, we consider the setting of a layer-peeled model in representation learning, which results in interesting phenomena related to learned features in deep learning and transfer learning, known as Neural Collapse (NC). Within the framework of NC, we establish an error bound indicating that the misclassification error is independent of dimension when the distance between actual features and the ideal ones is smaller than a threshold. Additionally, the quality of the features in the last layer is empirically evaluated under different pre-trained models within the framework of NC, showing that a more powerful transformer leads to a better feature representation. Furthermore, we reveal that DP fine-tuning is less robust compared to fine-tuning without DP, particularly in the presence of perturbations. These observations are supported by both theoretical analyses and experimental evaluation. Moreover, to enhance the robustness of DP fine-tuning, we suggest several strategies, such as feature normalization or employing dimension reduction methods like Principal Component Analysis (PCA). Empirically, we demonstrate a significant improvement in testing accuracy by conducting PCA on the last-layer features.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - Supervised Contrastive Representation Learning: Landscape Analysis with
Unconstrained Features [33.703796571991745]
Recent findings reveal that overparameterized deep neural networks, trained beyond zero training, exhibit a distinctive structural pattern at the final layer.
These results indicate that the final-layer outputs in such networks display minimal within-class variations.
arXiv Detail & Related papers (2024-02-29T06:02:45Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Towards Demystifying the Generalization Behaviors When Neural Collapse
Emerges [132.62934175555145]
Neural Collapse (NC) is a well-known phenomenon of deep neural networks in the terminal phase of training (TPT)
We propose a theoretical explanation for why continuing training can still lead to accuracy improvement on test set, even after the train accuracy has reached 100%.
We refer to this newly discovered property as "non-conservative generalization"
arXiv Detail & Related papers (2023-10-12T14:29:02Z) - Understanding and Improving Transfer Learning of Deep Models via Neural Collapse [37.483109067209504]
This work investigates the relationship between neural collapse (NC) and transfer learning for classification problems.
We find strong correlation between feature collapse and downstream performance.
Our proposed fine-tuning methods deliver good performances while reducing fine-tuning parameters by at least 90%.
arXiv Detail & Related papers (2022-12-23T08:48:34Z) - Perturbation Analysis of Neural Collapse [24.94449183555951]
Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point.
Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse.
We propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix.
arXiv Detail & Related papers (2022-10-29T17:46:03Z) - Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation [24.794022951873156]
We propose to learn Prototypical representation through Alignment, Uniformity and Correlation (PAUC)
Specifically, the ordinary ProtoNCE loss is revised with: (1) an alignment loss that pulls embeddings from positive prototypes together; (2) a loss that distributes the prototypical level features uniformly; (3) a correlation loss that increases the diversity and discriminability between prototypical level features.
arXiv Detail & Related papers (2022-10-18T22:33:12Z) - Extended Unconstrained Features Model for Exploring Deep Neural Collapse [59.59039125375527]
Recently, a phenomenon termed "neural collapse" (NC) has been empirically observed in deep neural networks.
Recent papers have shown that minimizers with this structure emerge when optimizing a simplified "unconstrained features model"
In this paper, we study the UFM for the regularized MSE loss, and show that the minimizers' features can be more structured than in the cross-entropy case.
arXiv Detail & Related papers (2022-02-16T14:17:37Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.