NeuralCMS: A deep learning approach to study Jupiter's interior
- URL: http://arxiv.org/abs/2405.09244v1
- Date: Wed, 15 May 2024 10:55:16 GMT
- Title: NeuralCMS: A deep learning approach to study Jupiter's interior
- Authors: Maayan Ziv, Eli Galanti, Amir Sheffer, Saburo Howard, Tristan Guillot, Yohai Kaspi,
- Abstract summary: We propose an efficient deep neural network (DNN) model to generate high-precision wide-ranged interior models.
We trained a sharing-based DNN with a large set of CMS results for a four-layer interior model of Jupiter.
NeuralCMS shows very good performance in predicting the gravity moments, with errors comparable with the uncertainty due to differential rotation, and a very accurate mass prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: NASA's Juno mission provided exquisite measurements of Jupiter's gravity field that together with the Galileo entry probe atmospheric measurements constrains the interior structure of the giant planet. Inferring its interior structure range remains a challenging inverse problem requiring a computationally intensive search of combinations of various planetary properties, such as the cloud-level temperature, composition, and core features, requiring the computation of ~10^9 interior models. We propose an efficient deep neural network (DNN) model to generate high-precision wide-ranged interior models based on the very accurate but computationally demanding concentric MacLaurin spheroid (CMS) method. We trained a sharing-based DNN with a large set of CMS results for a four-layer interior model of Jupiter, including a dilute core, to accurately predict the gravity moments and mass, given a combination of interior features. We evaluated the performance of the trained DNN (NeuralCMS) to inspect its predictive limitations. NeuralCMS shows very good performance in predicting the gravity moments, with errors comparable with the uncertainty due to differential rotation, and a very accurate mass prediction. This allowed us to perform a broad parameter space search by computing only ~10^4 actual CMS interior models, resulting in a large sample of plausible interior structures, and reducing the computation time by a factor of 10^5. Moreover, we used a DNN explainability algorithm to analyze the impact of the parameters setting the interior model on the predicted observables, providing information on their nonlinear relation.
Related papers
- Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets [40.19690479537335]
We show that DA-GNN achieves higher accuracy and robustness on cross-dataset tasks.
This shows that DA-GNNs are a promising method for extracting domain-independent cosmological information.
arXiv Detail & Related papers (2023-11-02T20:40:21Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - ExoMDN: Rapid characterization of exoplanet interior structures with
Mixture Density Networks [0.0]
We present ExoMDN, a machine-learning model for the interior characterization of exoplanets.
We show that ExoMDN can deliver a full posterior distribution of mass fractions and thicknesses of each planetary layer in under a second on a standard Intel i5 CPU.
We use ExoMDN to characterize the interior of 22 confirmed exoplanets with mass and radius uncertainties below 10% and 5% respectively.
arXiv Detail & Related papers (2023-06-15T10:00:03Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Predicting the Thermal Sunyaev-Zel'dovich Field using Modular and
Equivariant Set-Based Neural Networks [1.7709249262395885]
We train neural networks on the IllustrisTNG-300 cosmological simulation to predict the continuous electron pressure field in galaxy clusters.
We employ a rotational DeepSets architecture to operate directly on the set dark matter particles.
arXiv Detail & Related papers (2022-02-28T19:00:07Z) - Using Bayesian Deep Learning to infer Planet Mass from Gaps in
Protoplanetary Disks [0.0]
We introduce a deep learning network "DPNNet-Bayesian" that can predict planet mass from disk gaps.
A unique feature of our approach is that it can distinguish between the uncertainty associated with the deep learning architecture and uncertainty inherent in the input data.
The network predicts masses of $ 86.0 pm 5.5 M_Earth $, $ 43.8 pm 3.3 M_Earth $, and $ 92.2 pm 5.1 M_Earth $ respectively.
arXiv Detail & Related papers (2022-02-23T19:00:05Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.