論文の概要: Hierarchical Attention Graph for Scientific Document Summarization in Global and Local Level
- arxiv url: http://arxiv.org/abs/2405.10202v1
- Date: Thu, 16 May 2024 15:46:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 13:52:46.337761
- Title: Hierarchical Attention Graph for Scientific Document Summarization in Global and Local Level
- Title(参考訳): グローバル・ローカルレベルでの科学的文書要約のための階層的注意グラフ
- Authors: Chenlong Zhao, Xiwen Zhou, Xiaopeng Xie, Yong Zhang,
- Abstract要約: ロングインプットは、文間の大域的高次関係と局所的文内関係を同時にモデル化することを妨げる。
本稿では,階層的談話構造に基づく文書のモデル化にグラフニューラルネットワークを用いた新しい手法であるHAESumを提案する。
提案手法を2つのベンチマークデータセットで検証し,実験結果からHAESumの有効性を実証した。
- 参考スコア(独自算出の注目度): 3.7651378994837104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific document summarization has been a challenging task due to the long structure of the input text. The long input hinders the simultaneous effective modeling of both global high-order relations between sentences and local intra-sentence relations which is the most critical step in extractive summarization. However, existing methods mostly focus on one type of relation, neglecting the simultaneous effective modeling of both relations, which can lead to insufficient learning of semantic representations. In this paper, we propose HAESum, a novel approach utilizing graph neural networks to locally and globally model documents based on their hierarchical discourse structure. First, intra-sentence relations are learned using a local heterogeneous graph. Subsequently, a novel hypergraph self-attention layer is introduced to further enhance the characterization of high-order inter-sentence relations. We validate our approach on two benchmark datasets, and the experimental results demonstrate the effectiveness of HAESum and the importance of considering hierarchical structures in modeling long scientific documents. Our code will be available at \url{https://github.com/MoLICHENXI/HAESum}
- Abstract(参考訳): 科学文書の要約は、入力テキストの長い構造のために難しい課題となっている。
この長い入力は、文間の大域的高次関係と、抽出的要約における最も重要なステップである局所的文内関係の同時モデリングを妨げる。
しかし、既存の手法は主に一つの関係に焦点をあて、両方の関係を同時に効果的にモデル化することを無視し、意味表現の学習が不十分になる可能性がある。
本稿では,階層的談話構造に基づく文書の局所的およびグローバルなモデル化にグラフニューラルネットワークを利用した新しい手法であるHAESumを提案する。
第一に、文内関係は局所的な異種グラフを用いて学習される。
その後、高次相互関係のキャラクタリゼーションを強化するために、新しいハイパーグラフ自己アテンション層が導入された。
提案手法を2つのベンチマークデータセットで検証し,HAESumの有効性と長期科学的文書のモデル化における階層構造の検討の重要性を実験的に検証した。
私たちのコードは \url{https://github.com/MoLICHENXI/HAESum} で利用可能です。
関連論文リスト
- Graph-tree Fusion Model with Bidirectional Information Propagation for Long Document Classification [20.434941308959786]
長い文書分類は、その広範な内容と複雑な構造のために困難を呈する。
既存のメソッドはトークン制限に苦しむことが多く、ドキュメント内の階層的関係を適切にモデル化することができない。
本手法は,文エンコーディングのための構文木と文書エンコーディングのための文書グラフを統合し,より詳細な構文関係とより広い文書コンテキストを抽出する。
論文 参考訳(メタデータ) (2024-10-03T19:25:01Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
帰納的文書分類のための新しいGNNに基づくスパース構造学習モデルを提案する。
本モデルでは,文間の不連続な単語を接続する訓練可能なエッジの集合を収集し,動的文脈依存性を持つエッジを疎結合に選択するために構造学習を用いる。
いくつかの実世界のデータセットの実験では、提案されたモデルがほとんどの最先端の結果より優れていることが示されている。
論文 参考訳(メタデータ) (2021-12-13T02:36:04Z) - Exploiting Global Contextual Information for Document-level Named Entity
Recognition [46.99922251839363]
我々は、GCDoc(Global Context enhanced Document-level NER)と呼ばれるモデルを提案する。
単語レベルでは、文書グラフは単語間のより広範な依存関係をモデル化するために構築される。
文レベルでは、単一文を超えてより広い文脈を適切にモデル化するために、横断文モジュールを用いる。
我々のモデルは、CoNLL 2003データセットで92.22(BERTで93.40)、Ontonotes 5.0データセットで88.32(BERTで90.49)のスコアに達した。
論文 参考訳(メタデータ) (2021-06-02T01:52:07Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - InsertGNN: Can Graph Neural Networks Outperform Humans in TOEFL Sentence
Insertion Problem? [66.70154236519186]
センテンス挿入は繊細だが基本的なNLP問題である。
文順序付け、テキストコヒーレンス、質問応答(QA)の現在のアプローチは、その解決には適さない。
本稿では,この問題をグラフとして表現し,グラフニューラルネットワーク(GNN)を用いて文間の関係を学習するモデルであるInsertGNNを提案する。
論文 参考訳(メタデータ) (2021-03-28T06:50:31Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
本稿では,グラフニューラルネットワーク(GNN)に基づく抽出要約モデルを提案する。
本モデルでは,文章選択のための文書レベルの特徴を提供する潜在トピックを発見するために,共同ニューラルトピックモデル(NTM)を統合している。
実験結果から,CNN/DMおよびNYTデータセットにおいて,本モデルがほぼ最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T09:30:04Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
本稿では,共同グラフを渡る反復的メッセージのプロセスとして,このタスクをリキャストするクロスモーダルグラフ注意ネットワーク(CSMGAN)を提案する。
CSMGANは2つのモード間の高次相互作用を効果的に捉えることができ、より正確な局所化を可能にします。
論文 参考訳(メタデータ) (2020-08-04T08:25:24Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。